
Visual Comput (2005) 21: 659–668
DOI 10.1007/s00371-005-0319-x O R I G I N A L A R T I C L E

Hitoshi Yamauchi
Stefan Gumhold
Rhaleb Zayer
Hans-Peter Seidel

Mesh segmentation driven by Gaussian
curvature

Published online: 1 September 2005
© Springer-Verlag 2005

H. Yamauchi (�) · S. Gumhold ·
R. Zayer · H.-P. Seidel
MPI Informatik, Saarbrücken, Germany
{hitoshi, sgumhold, zayer,
hpseidel}@mpi-inf.mpg.de

Abstract Mesh parameterization is
a fundamental problem in computer
graphics as it allows for texture
mapping and facilitates many mesh
processing tasks. Although there
exists a variety of good parameteri-
zation methods for meshes that are
topologically equivalent to a disk, the
segmentation into nicely parameteri-
zable charts of higher genus meshes
has been studied less. In this paper
we propose a new segmentation
method for the generation of charts
that can be flattened efficiently. The
integrated Gaussian curvature is
used to measure the developability
of a chart, and a robust and simple

scheme is proposed to integrate the
Gaussian curvature. The segmen-
tation approach evenly distributes
Gaussian curvature over the charts
and automatically ensures a disklike
topology of each chart. For numerical
stability, we use an area on the Gauss
map to represent Gaussian curvature.
The resulting parameterization shows
that charts generated in this way have
less distortion compared to charts
generated by other methods.

Keywords Mesh segmentation ·
Gauss map · Gaussian curvature ·
Parameterization · Developability

1 Introduction

The goal of surface mesh segmentation is to construct
a covering of a given mesh, which is composed of surface
patches, i.e., charts. There has been a considerable body
of research devoted to this technique in the last few years.
Its significance to computer graphics arises in several con-
texts such as surface parameterization, compression, sur-
face editing, and morphing. This diversity of applications
fosters the need for segmentation techniques that best suit
specific purposes. The quality of segmentation usually de-
pends on its field of application. As a general requirement,
it is desirable to maintain clean boundaries between charts
as unresolved boundary artifacts significantly reduce the
usability of the segmentation. Other quality measures re-
garding the flatness of the charts or how good they capture
the semantics of the surface mesh could be taken into con-
sideration as well.

Our key contribution is a novel efficient segmentation
approach generating charts with balanced curvature distri-
bution. The mathematical tool at the heart of the approach
is the Gauss map of the surface to the unit sphere, re-
gardless of its genus. This allows us to guide our new
chart flooding (t-flooding) in an intelligent manner that
automatically cuts along sharp creases and corner points.
An additional property of our method is the total con-
trol over the timing when a chart can start growing and
when it should stop. Furthermore, our algorithm consid-
ers the shape of the chart boundary during the growing
process and tends to avoid jagged boundaries. While our
method is especially suited to surface parameterization,
this does not prevent its use for applications such as the
fitting of subdivision surfaces to the original mesh and
compression.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief review of the literature relevant to
our method. In Sect. 3, we detail our Gaussian curva-

660 H. Yamauchi et al.

ture distribution method for surface segmentation. The
results are shown in Sect. 4, and Sect. 5 concludes the
paper.

2 Related work

The problem of segmenting a polygonal mesh into charts
has been studied in computer graphics with different
goals. This problem is fundamentally an ill-posed prob-
lem. An optimal solution is often application specific and
quite heavily depends on what is an optimal or what is
a meaningful segmentation. Without loss of generality,
many existing schemes might be classified into one of the
following categories: shape analysis [1, 5, 10, 18, 20, 23,
28], shape simplification [2, 9, 14], shape modeling and
retrieval [8, 15], and texture atlas generation [16, 17, 26].
We also refer the reader to [27] for a recent survey of this
area.

Our goal in mesh segmentation is the generation of
low-distortion charts for surface parameterization. From
this point of view, the predominant segmentation criterion
is the ability to flatten the generated charts. Applications
of our segmentation approach are texture atlas generation,
sheet- or plate-metal-based industrial design, and so forth.
In accordance with this criterion, the next three categories
are relevant to our approach: (1) Approximating surfaces
with developable parts, (2) flatness- or normal-based seg-
mentation, and (3) low-distortion parameterization for tex-
ture atlas generation.

Approximating surfaces with developable parts. The re-
search dedicated to this technique aims at generating de-
velopable surface patches that approximate an original
surface with Bézier and B-spline surfaces [6, 24], surfaces
of revolution[11], and a general triangle mesh [22]. In
order to maintain the developability, these methods tend
to generate charts composed of polygon or triangle strips.
In general, this yields charts with rather long boundaries
in comparison to their area and may cause considerable
artifacts during texture atlas generation.

Flatness- or normal-based segmentation. Since a plane is
the simplest developable surface, it seems intuitive that
segmentation based on plane fitting or normal clustering
automatically considers the ability to flatten the resulting
charts. Cohen–Steiner et al. [2] use normal clustering to
subdivide a complex polygonal mesh into regions that can
be approximated by planar polygons. Inoue et al. [12] de-
velop a method based on normal scoring where the scores
combine the variance of normals and their largest deriva-
tives.

While these methods yield interesting results, they are
limited to a smaller class of developable surfaces. For ex-
ample, a cylinder and a cone are also developable; how-

ever, the plane-fitting method would not recognize these
surfaces as such.

Low-distortion parameterization for texture atlas gen-
eration. Maillot et al. [19] propose an interactive tool
for user-guided segmentation based on a distortion en-
ergy. Sanders et al. [25] use a hierarchical face clustering
method, which was simultaneously proposed by [9], for
mesh segmentation by merging triangles driven by a pla-
narity criterion. In order to account for sharp features Lévy
et al. [17] first detect sharp features and use these to place
chart seeds maximally apart for a chart-growing process.
Shlafman et al. [28] combine the region-growing strategy
with a Lloyd–Max iteration that allows for the replace-
ment of the seeds and accounts for geodesic distances as
well as dihedral angles. The stability of this method was
improved by Sanders et al. [26] by introducing a represen-
tative normal that is the average of all triangle normals
in a chart. The method of Sorkine et al. [29] grows charts
and simultaneously creates a parameterization. The mesh
is cut whenever distortion is above a certain threshold.
Zhou et al. [31] address the problem using a combination
of stretch minimization and multidimensional scaling.

In most of the above-mentioned methods, there is
a tight connection between two problems, segmentation
and parameterization. It is hence hard to see exactly
whether the distortion stems from the segmentation tech-
nique or parameterization method. A naïve solution would
be to generate all possible segmentations, parameterize
them, then select the one with minimal distortion. While
such a solution is impractical, an estimation of distortion
without explicit parameterization is the key point to a good
segmentation.

Our goal is to segment mesh models based on a meas-
ure that is independent of the subsequent parameterization
method.

Independently of our work, Julius et al. [13] proposed
recently an approach similar to ours. Instead of using the
Gaussian curvature to steer the segmentation process, they
rely on a developability measure that captures how well
a chart approximates a cone or a cylinder. They straighten
out the chart boundaries in a postprocessing step and con-
struct a sewing pattern that allows for making stuffed
toys.

3 Segmentation based on developability

Texture mapping is one of the oldest techniques in com-
puter graphics, and yet it is one of the most powerful tools
today to represent complex objects at low computational
cost. Texture mapping usually proceeds on charts with
a disklike topology. In practice however, meshes usually
have arbitrary topology. A straightforward solution con-
sists in generating a texture atlas that entails decomposing

Mesh segmentation driven by Gaussian curvature 661

high-genus meshes into several disklike charts. In general,
two problems arise after segmentation:
1. Misalignment of chart boundary,
2. Distortion in a successive parameterization.
In order to address these problems, Lévy et al. [17] ob-
serve that the perceived visual quality is better when the
chart boundary is aligned with surface features. While
the presented results seem to be convincing, it is hard
to formalize the relationship between segmentation and
the human perceptual factor of textured models. Sander
et al. [26] propose a method that tends to produce charts
with rounded shapes based on similarities of the nor-
mals. Benko et al. [1] propose a normal classification-
based segmentation method for point clouds. However,
when applied to meshes, this approach often gener-
ates problematic extra charts due to its insensitivity to
mesh connectivity. Steiner et al. [2] classify triangles
using both normals and mesh connectivity. While this
method is primarily proposed for shape simplification,
it can be used effectively for producing near planar
charts.

A second category of mesh segmentation techniques
targets the direct control of the segmentation process using
predefined parameterization distortion measures. This re-
quirement induces a partial or full mesh parameterization
during the segmentation process. In fact this restricts the
method to the use of an incrementally computable pa-
rameterization, e.g., [19, 29], where the number of charts
and their shape are completely driven by the ongoing
parameterization, or to an iterative process where sev-
eral chart parameterizations have to be computed in every
step, e.g., [31], which may increase the segmentation cost.
Furthermore, the lack of a consensus on which distor-
tion measure would be the most appropriate makes the
coupling of parameterization and segmentation a difficult
choice.

In order to address the chart boundary artifacts and
parameterization distortion in a cost-effective manner, we
introduce a new method based on Gaussian curvature.

3.1 Charts for Gauss area distribution

Our approach is motivated by two goals. Firstly, we aim at
generating suitable charts for mesh parameterization with-
out any use of parameterization during the segmentation
process. Secondly, we aim at the segmentation of devel-
opable charts as opposed to planar charts, which have been
treated in the aforementioned literature.

In order to decouple the distortion measure from the
parameterization technique, we base our segmentation
strategy on a more objective measure that also captures the
developability of the charts. For this purpose, we intro-
duce the well-known Gaussian curvature K = κminκmax.
If K ≡ 0 everywhere, the chart is developable and can
be parameterized without distortion, independently of the

chosen distortion measure. Therefore, our segmentation
method aims at an even distribution of the error ε in devel-
opability, which we define as

ε(ci) =
∫

ci

|K | ·dA , (1)

where ci is the ith chart. Let us consider a small surface
patch of area A on a surface. The Gauss map maps the sur-
face points to their normals, which live on the unit sphere.
Let AG be the area of the patch normals on the unit sphere.
In the limit for A → 0 the ratio AG/A converges to the
Gaussian curvature K . This can be abbreviated in differ-
ential form as K = dAG/dA. Combining this with Eq. 1
yields

ε(ci) =
∫

ci

|dAG |. (2)

Thus the chart error is the integral of the absolute value
of the area on the Gauss map (= Gauss area) and the
segmentation problem reduces to the problem of distribut-
ing the Gauss area evenly among the charts. This can be
achieved by minimizing the standard deviation in the chart
error, i.e.,

min
√∑

i

(εave − ε(ci))2 , (3)

where εave is the average chart error (εave = 1
n

∑
i ε(ci) for

n charts). In this way, we have defined the objective func-
tion for our developability-based segmentation. This setup
comes in handy as it allows for a simple and intuitive dis-
cretization.

The main reason for using Gauss area instead of Gaus-
sian curvature K is numerical stability. This instability
of K was also noted in [13]. A robust estimation of K
is generally a hard problem, while the calculation of the
Gauss area offers a simpler alternative and yields a more
appealing numerical problem. In fact, using the method
of Welch et al. [30], the range of |K |, e.g., of the Happy
Buddha model, is [2.0×10−2, 2.6×106] and its standard
deviation is 7.3×104. This wide range of values is numer-
ically difficult to handle, even with the use of filtering
techniques. The Gauss area, on the other hand, is always
within [0, 4π].

In the rest of this section we first elaborate on the
computation of the Gauss area, which is the area per
mesh element computed on the Gauss map. Section 3.3
details the chart-growing process, where the objective
function minimization and chart boundary optimization
are both taken into consideration. Then we discuss the
positioning of seeds for successive iterations and con-
vergence of them. Section 3.5 details an important con-
tribution, namely the offset strategy, which allows us to

662 H. Yamauchi et al.

Fig. 1a–c. Gauss area (∆AG) computation of each mesh element.
a Vertex ∆AG : The vertex normals (blue arrows) mapped on the
unit sphere yield ∆AG > 0. b Edge ∆AG : Gauss area for crease
edge case. c Triangle ∆AG

perfectly balance the charts in terms of covered Gauss
area. We end the section with a description of our ap-
proach to controlling the topological integrity of the sur-
face charts.

3.2 Gauss area computation

For the computation of the Gauss area integrals in Eq. 2
we regard the polygonal mesh as an approximation to
a smooth surface, which may have sharp creases and cor-
ners. We use a simple thresholding strategy to extract
sharp edges: an edge is tagged as sharp if its dihedral
angle is larger than a user-defined threshold Ta. One ad-
vantage of using the Gauss area integrals is that we can
encapsulate smooth surfaces by simply estimating the sur-
face normals at the vertices. To account for sharp fea-
tures the surrounding area of each vertex is split by the
sharp edges into smooth regions. For each region we
estimate a different vertex normal with weights accord-
ing to [21]. We note that a more involved normal partial
evaluation method was proposed in [3]; however, we re-
strict ourselves to our thresholding method for simpli-
city.

The vertex normals computed in this way lead to the
following computation of the Gauss area integrals for the
different mesh elements. For each mesh element, we de-
note the associated absolute Gauss area by ∆AG (Eq. 2).
Figure 1 illustrates the computation of the Gauss area for
vertices, edges, and faces. For each mesh element the in-
cident vertex normals are projected onto the unit sphere
and define a spherical polygon. The area of this polygon is
equal to ∆AG and can be computed using standard formu-
las from spherical geometry.

We note for noncorner points and noncrease edges we
get only one normal per vertex as we do not apply the
splitting procedure of normals. Therefore, these vertices
and edges have a null Gauss area.

During the chart construction the Gauss area assigned
to an edge or vertex is added to a chart only when the
mesh element is entirely inside the chart, but not when
it is still part of the chart boundary. In this way a cut
through a bent sharp crease or a corner point does not
add up to the Gauss area of all the edges and vertices on

the cut. Our chart-growing algorithm exploits this fact to
direct the cut automatically through sharp features with-
out any special optimization as proposed for example
in [17].

3.3 Chart flooding (t-flooding)

The goal of the flooding algorithm is twofold. It aims
on the one hand at adapting the chart boundaries to fea-
tures and, on the other hand, at distributing the Gauss
area evenly over the charts. A minimum spanning tree
(MST) approach as described in [26] is not capable of
balancing the Gauss area of the charts since the MST
is designed for finding the shortest path from a certain
node, not for balancing some integral value. Steering the
region-growing process only by the normal deviation or
the average squared distances to a reference plane, as is
done in [2], leads to very jagged boundaries for highly tes-
sellated models.

We therefore designed a new method that floods the
mesh simultaneously from the different seeds, where the
relative growing rate of the charts in terms of Gauss area
is equalized over the charts. As the Gauss area is not
evenly distributed over the surface, we introduce an artifi-
cial time coordinate t to parameterize the flooding process
(t-flooding). For reference we defined an arbitrary total
flooding time ttotal . Let AG,total be the total integrated
Gauss area of the mesh and k the number of charts. The
goal is to grow each chart such that the inflow of the Gauss
area is constant during the growing process, i.e.,

α := dAG

dt
= const = AG,total

k · ttotal
. (4)

We call α the Gauss area inflow, or inflow for short.
In 1D a constant inflow can be easily achieved by

a weighted-distance-based growing algorithm, which can
be efficiently implemented by a fast marching method. But
on a 2-manifold this is slightly more complicated. The typ-
ical approach is to grow the charts with constant speed

Fig. 2. An example of area imbalance. When charts are flooded
from the two seeds (s1, s2) with constant speed, the chart on the
left covers much more area (A1 >> A2), although they meet at the
midpoint (d1 = d2). The perimeter lengths are also imbalanced in
this case

Mesh segmentation driven by Gaussian curvature 663

Fig. 3a,b. Growing a chart. a A chart boundary edge Ej and its
incident triangles Tin, j , Tex, j , and different relative speeds vrel, j
along the boundary. b The mesh elements that contribute to ∆AG, j
include the triangle Tex, j , the edge Ej , and its incident vertices.
The top sphere shows Gauss-mapped normals of adding triangle
(bottom)

of its boundary, where speed is measured. This results in
a generalized Voronoi diagram and does not even balance
the charts. A simplified example is visualized in Fig. 2,
where we only consider the unweighted case to evenly dis-
tribute surface area among two charts. Although the charts
meet at an equal distance from the two seeds, the area
of the left chart is much larger than the area of the right
chart. This is due to the changing perimeter p of the chart.
For a flooding speed of v the area inflow computes to v ·
p and therefore varies with the perimeter. It is obvious
that the same thing happens in a weighted approach, as
for example with the Gauss area inflow, which does not
allow a balanced generation of charts. Interestingly, all ap-
proaches like [2] or [26] neglect this fact and just accept
the loss of balance.

Our first approach to make the inflow constant over
time was to set the growing speed vi of chart i propor-
tional to the inverse of its perimeter pi on the Gauss map,
i.e., vi = α/pi . To make the whole idea independent of
the perimeter, which is hard to interpret for the Gauss
area, we defined for each chart boundary edge Ej the local
inflow αj . The quantities defined in the following are illus-
trated in Fig. 3. The chart boundary will be extended by
the exterior triangle Tex, j at time tex, j . Suppose the inte-
rior triangle Tin, j was incorporated into the chart at time
tin, j . Then the time delay ∆tj at the chart boundary edge
Ej is defined as tex, j − tin, j . When the exterior triangle
Tex, j is incorporated into the chart, it adds its own Gauss
area and that of the newly incorporated edge Ej . If Tex, j
completes the fan of one of its incident vertices with all tri-
angles from the same chart i , the Gauss area of this vertex
is also incorporated into the chart at time tex, j . Summing
all the Gauss area contributions together yields the local
delta ∆AG, j in the Gauss area, from which the local in-
flow is computed as ∆AG, j/∆tj .

By summing over all local inflows of a chart, we ob-
tain a relation between the chart inflow and the local time

delays ∆tj :

α =
∑
j∈Bi

αj =
∑

j

∆AG, j

∆tj
, (5)

where Bi is the set of boundary edges of the ith chart ci ,
i.e., Bi = {Ej |Ej ∈ ∂ci}. As α is constant and the ∆AG, j
are computed from the mesh, only the local delays ∆tj
or, equivalently, the triangle incorporation times tex, j are
unknown. We sort the exterior triangles incident to the
chart boundaries into a heap, which is sorted by tex, j . To
achieve a flooding with nice evolution of the chart bound-
ary, it is essential to compute the incorporation time of
an exterior triangle at the moment when it becomes inci-
dent to the chart boundary for the first time. We note that
this is quite different from a greedy approach, e.g., where
the heap is sorted by normal deviation. In our method, the
time parameter is related to the distance from the seed and
the chart perimeter, while in a greedy approach there is
usually no consideration for either of them; therefore, the
boundary generated by such methods can be more jagged
than ours.

Equation 5 only fixes one of the ∆tj of each bound-
ary and gives us the freedom to choose the others to
best serve our needs. We associate this degree of freedom
with the ability to define arbitrary relative growing speeds
vrel, j along the chart boundary, whose scaling is defined
by Eq. 5. We used the relative growing speeds to adapt
the charts to sharp features. For this we defined the rela-
tive speed as a function of the absolute value of the local
Gaussian curvature |Kj |, which we robustly estimated by
|Kj | = ∆AG, j/∆Aj , where ∆Aj is just the triangle area
on the 3D mesh of the exterior triangle Tex, j . From this the
local relative speed was defined as

vrel, j = 1

f
(|Kj |

) . (6)

Function f can be chosen arbitrarily. A good choice
turned out to be

f(x) = (x +ε)p , (7)

where p was chosen in [1, 6]. The epsilon ε is necessary as
the speed would otherwise become infinite in developable
regions, which would bring us back to a greedy growing
strategy. Epsilon was chosen between 10−3 and 10−6 of
the maximum Gaussian curvature maxj |Kj |, where all tri-
angles, edges, and vertices of the triangulation were con-
sidered for this maximization. For edges and vertices the
area ∆A was chosen as the smallest from the adjacent
triangles. The bigger ε is, the less adaptive the approach
becomes. Using the relative speeds vrel, j , the actual local
speeds vj are computed based on a per-chart scaling fac-
tor λi : vj = 1

λi
vrel, j . Hence one can define the time delays

664 H. Yamauchi et al.

to be ∆tj = ∆sj/vj , and ∆sj is the distance between tri-
angles measured in Euclidean space as shown in Fig. 3b,
i.e.,

∆sj = ‖cTin, j − cTex, j ‖ , (8)

where cT is triangle T ’s centroid.
The final step is the computation of the λis for each

chart in order to adjust their inflows. This can be achieved
by plugging in the expressions for ∆tj into Eq. 5 and solv-
ing for λi . As the sum over index j in Eq. 5 runs over the
chart boundary edges, λi changes over time. With a chang-
ing λi the time delays ∆tj(λi) also change over time,
which makes it difficult to keep the incorporation times
efficiently in the right order.

To avoid this computational burden for the λi we pro-
pose the use of a multiheap chart-growing approach. For
this we make the assumption that the change of a λi over
time does not reorder the triangle incorporation times in-
side chart i but only the incorporation order between the
different charts. This makes sense as we introduced the λis
to balance the growing of the different charts. The idea
of the multiheap approach is to keep one primary heap of
charts and for each chart a secondary heap. The primary
heap is used to sort the charts according to their accumu-
lated Gauss area. The secondary heap sorts the triangles
adjacent to the chart boundary with respect to the local
time of the chart in order to determine which triangle will
be incorporated next. For a better balancing we did one ad-
ditional lookahead step by adding the ∆AG of the triangle
that should be incorporated next to the Gauss area weight
of the primary heap. The secondary heaps are sorted by
local time scales, where the global time t is scaled by λi of
the charts, i.e., ti = t/λi such that λi is completely dropped
from the equations defining ∆tj . In this way the charts
could be flooded with completely balanced Gauss area in-
flow. Finally, ∆tj is rewritten as

∆tj = ∆sj · f(|Kj |) (9)

in the multiheap implementation.

3.4 Seed positioning and convergence

Our seed placement and repositioning strategy are simi-
lar to that of [2, 26]. We place the first seed at ran-
dom, grow one chart, and place the next seed further
apart from the seeds placed thus far. After each t-flooding
phase, the seeds need to be repositioned in such a way
as to respect the features even better in the next itera-
tion. We also followed a Lloyd–Max strategy in [2, 26].
For each chart we computed the point of maximal dis-
tance from the boundary of the chart. We worked on the
triangle graph of the charts and weighted the Euclidean
distances by the ∆tj of the triangles. This approach re-
pulses seeds from each other when they are too close on
the surface.

After the number of seeds reaches the user-specified
number of charts in the above iterations, we continue to
optimize the seed positions by the Lloyd–Max strategy
with a Gauss area offset computation that is detailed in
Sect. 3.5. This seed position optimization is repeated un-
til all seed positions are converged. However, the discrete
optimization procedure sometimes fails to converge be-
cause of oscillation, as also mentioned in [26]. Therefore,
we regard one of the following cases as converged: (1)
a seed place oscillation cycle is detected, (2) the number of
iterations exceeds a user-defined threshold, (3) the Gauss
area distribution is not improved by the latest n iterations,
where n is a user-specified threshold, e.g., n = 10 in this
paper.

3.5 Offset computation of Gauss area

A major problem for a perfectly balanced chart generation
is the early blocking of charts during the flooding pro-
cedure. It happens quite often that all the boundary edges
of a chart become adjacent to different neighboring charts
such that it has no possibility of growing any further. The
seed repositioning does not seem to resolve these situa-
tions in some cases.

We therefore extend our multiheap approach. To each
chart i we assign a Gauss area offset AG,off,i . The offset
is kept constant over each flooding step and initialized to
zero in the beginning. The weights for the primary heap
are simply computed as the sum of the incorporated Gauss
area plus the chart offset. Some too fast growing charts
have this offset as a penalty. This allows us to delay the
flooding of some charts in relation to the others.

This very simple mechanism can be efficiently ex-
ploited to improve the balancing performance. After each
flooding step the Gauss areas of the resulting charts are
used to define the offsets for the next flooding round. We
increase the offsets of the larger charts and keep the offsets
of the smallest chart fixed. If AG,off,min is the Gauss area
of the smallest chart, we set

AG,off,i := AG,off,i +β(AG,off,i − AG,off,min), β ∈]0, 1]
with the damping factor β. In our experiments, we use
β = 0.9. This simple method allows us to balance well the
charts with respect to the Gauss area.

3.6 Topology constraints

The final part of our approach deals with the topological
consistency of the charts. In a texture mapping context,
it is desirable to have charts with a disk topology. Thus
we use two tools, a handle-cutting tool (HandleCutter) and
a tool that cuts a genus zero chart with several boundary
loops into a disklike chart with one boundary loop (Loop-
MergeCutter). Both tools employ greedy approaches and

Mesh segmentation driven by Gaussian curvature 665

Fig. 4. HandleCutter tool. 1) start growing, 2)–3) split bound-
ary/growing, 4)–5) meets split boundary and detects handle, 6) cut
result. The final cutting paths are chosen by keeping the shortest
perimeters for each wavefront during the growing

do not try to generate optimal cuts as this problem is
known to be NP-complete [7].

The HandleCutter detects handles and cuts each handle
to make a cylinder. This algorithm is based on a region-
growing algorithm similar to the approximate handle-
cutting procedure in [7]. We start with a seed, which is
usually randomly selected, and grow a region while keep-
ing the region boundary as short as possible. Around
a handle the region boundary will split at least once, and
exactly once per handle two different region boundaries
merge again. The two boundary loops that merge are both
candidates for cutting the handle. We remember the short-
est wavefront boundary loops during the growing, and
when we detect a handle, we always select the shorter of
the two candidate loops as a cutting path. Then we con-
tinue to grow until the region grows over all triangles.
Figure 4 demonstrates how to cut a double torus.

The LoopMergeCutter traverses the resulting mesh
starting from the largest chart boundary loop in a breadth-
first order storing the shortest distances to the surrounding
boundary loop. The interior boundary loop that is merged
first to its surrounding boundary is connected with a short-
est path to the surrounding boundary. The shortest path
can be found by a simple backtracking procedure on the
stored shortest distances. The resulting cut and the hit
boundary loop are merged with the surrounding loop and
the process is continued until all loops have been merged
into the surrounding boundary loop. It is additionally pos-
sible to cut cylindrical shapes, which are closed on one
side, at the tips. These typically cause high distortions that
are not captured in terms of Gaussian curvature. To cut
such tips we detect the local extrema in the distance map
resulting from the loop-merging process. If an extremum
is found that is at least as far from the final boundary loop
as the length of the final boundary loop, we also generate
a shortest cut to this local extremal vertex.

Fig. 5a–c. Gauss area computation. Color-coded Gauss area: blue
(small Gauss area) to red (large Gauss area). High Gaussian cur-
vature elements are detected as features a vertex AG , b edge AG ,
c triangle AG

4 Results and discussion

We applied our algorithm to several data sets and com-
pared the result to some of the existing methods. Figure 5
depicts the Gauss area of each mesh element type: (a)
vertex, (b) edge, and (c) triangle. A large Gauss area co-
incides with high Gaussian curvature. The elements that
have high Gaussian curvature are detected as they are usu-
ally recognized features.

Figure 6 compares the segmentation results of (a) mul-
tichart geometry image (MCGIM) [26], (b) variational
shape approximation (VSA) [2], and (c) our approach.
The method of [2] is a shape approximation method and
is not presented as a segmentation method. However, this
method usually generates high-quality segmentation.

Table 1 shows L2 geometric stretch [25] measurement
results. To obtain these results we first cut the patches
into topological disks, then projected each chart bound-

Table 1. Parameterization distortion. Distortion is measured by L2-
geometric stretch [25]. The values are averaged over all patches.
Standard deviation is given in parentheses. Number of triangles and
t-flooding elapsed time (s) are also shown

Model Happy Rocket Santa

MCGIM [26] 8.1(7.8) 29.1(39.3) 22.9(11.6)
VSA [2] 12.4(12.6) 28.2(21.5) 60.1(47.1)
t-flooding 7.3(4.7) 17.9(7.3) 17.2(8.6)
of tris. 19976 80354 151558

Elapsed time 20.6 91.5 363

666 H. Yamauchi et al.

Fig. 6a–c. Segmentation effect for texturing of several models. Segmentation by a MCGIM [26], b VSA [2], c our t-flooding. Number of
charts is 20 for all examples. The green line shows chart boundary. A conformal parameterization method [4] is applied for all charts with
the same parameters. Each parameterized chart is mapped to [0, 1]× [0, 1]. The size of the checkerboard texture is 256×256 pixels

Mesh segmentation driven by Gaussian curvature 667

Table 2. Standard deviation (Eq. 3) of the Gauss area distribution

Model Happy Rocket Santa

MCGIM [26] 64.3 11.0 14.3
VSA [2] 69.0 17.3 18.9
t-flooding 25.6 4.55 2.48

ary to a unit circle, parameterized each chart with [4],
and measured the L2-geometric stretch. The results show
that our method clearly gave the lowest distortion com-
pared to others. We segmented the meshes into 20 charts
in all experiments. For the VSA method, both telepor-
tation and the merging of charts were activated. For
our method (t-flooding), the dumping factor was set to
β = 0.9 during offset calculation, ε = 0.0001, and the
power p of the speed function was 3.0 for the Happy
model and 1.0 for Santa and Rocket. As a partial normal
evaluation threshold we used Ta = 45◦ for all examples.
From Fig. 6 and Table 1 one can see that t-flooding dis-
tributes distortions equally over the charts, while other
methods have both low-distortion and high-distortion
charts.

Table 1 also shows the elapsed time of t-flooding and
the number of triangles of each mesh. Currently, no opti-
mization has been carried out in our implementation. All
timings were measured on a 1.7-GHz Pentium 4 Linux
machine.

Table 2 shows the distribution of the Gauss area over
the charts and the total Gauss area of the models. Since
our method is designed for minimizing this standard de-
viation, it has the lowest standard deviation of Gauss area
distribution.

5 Conclusions and future work

In this work we presented a new criterion for mesh seg-
mentation that is based on the even distribution of Gaus-
sian curvature over the resulting charts. For numerical
stability we used Gauss area on the Gauss map to esti-
mate Gaussian curvature. This method generates almost
developable charts. We showed that the created charts
are suited better for parameterization than charts gen-
erated with approaches known from the literature. Our
approach is especially suited for the cutting of higher
genus models into a small number of charts. The gener-
ated cuts are nicely shaped and adapt to sharp surface
features that are not developable. Our approach gener-
ates charts that can be parameterized with low distortion
without directly measuring the distortion during segmen-
tation.

For the Gauss area equalization we introduced the new
paradigm of flooding with constant inflow, which we im-
plemented with an efficient multiheap strategy. We also
proposed an offset scheme for the repeated flooding pro-
cess allowing for a much better balanced mesh segmenta-
tion.

In future work we would like to apply the t-flooding
approach to other region-growing-based mesh segmenta-
tion approaches in order to achieve better error equaliza-
tion. We would also like to improve the Gauss area estima-
tion since currently our method is based on simple angle
thresholding.

Acknowledgement We thank the anonymous reviewers for their
thoughtful and constructive suggestions. The research was sup-
ported in part by European FP6 NoE Grant 506766 (AIM@SHAPE)
and the DFG Project GU 601/1.

References
1. Benkő, P., Várady, T.: Direct segmentation

of smooth, multiple point regions. In:
Proceedings of Geometric Modeling and
Processing Theory and Applications (GMP
’02), pp. 169–178. IEEE Press, New York
(2002)

2. Cohen–Steiner, D., Alliez, P., Desbrun, M.:
Variational shape approximation. ACM
Trans. Graph. 23(3), 905–914 (2004)

3. Cohen–Steiner, D., Morvan, J.M.:
Restricted delaunay triangulations and
normal cycle. In: Proceedings of the 19th
Symposium on Computational Geometry,
pp. 312–321 (2003)

4. Desbrun, M., Meyer, M., Alliez, P.:
Intrinsic parameterizations of surface
meshes. In: Proceedings of Eurographics,
21(3), 209–218 (2002)

5. Dey, T.K., Giesen, J., Goswami, S.: Shape
segmentation and matching with flow
discretization. In: Proceedings of the
Workshop on Algorithms Data Structures

(WADS 03). Lecture notes in computer
science, vol 2748, pp. 25–36 (2003)

6. Elber, G.: Model fabrication using surface
layout projection. Comput.-Aided Des.
27(4), 283–291 (1995)

7. Erickson, J., Har-Peled, S.: Optimally
cutting a surface into a disk. In: Workshop
of the 18th ACM Symposum on
Computational Geometry, pp. 244–253
(2002)

8. Funkhouser, T., Kazhdan, M., Shilane, P.,
Min, P., Kiefer, W., Tal, A., Rusinkiewicz,
S., Dobkin, D.: Modeling by example.
ACM Trans. Graph. 23(3), 652–663
(2004)

9. Garland, M., Willmott, A., Heckbert, P.:
Hierarchical face clustering on polygonal
surfaces. In: Workshop of the ACM
Symposium on Interactive 3D Graphics,
pp. 49–58 (2001)

10. Gelfand, N., Guibas, L.J.: Shape
segmentation using local slippage analysis.

In: Workshop of the Eurographics
Symposium on Geometry Processing
(SGP-04), pp. 219–228 (2004)

11. Hoschek, J.: Approximation of surfaces of
revolution by developable surfaces.
Comput.-Aided Des. 30(10), 757–763
(1998)

12. Inoue, K., Itoh, T., Yamada, A., Furuhata,
T., Shimada, K.: Clustering large number
of faces for 2-dimensional mesh generation.
In: Proceedings of the 8th International
Meshing Roundtable, pp. 281–292 (1999)

13. Julius, D., Kraevoy, V., Shaffer, A.:
D-charts: Quasi-developable mesh
segmentation. In: Proceedings of
Eurographics (2005) (in press)

14. Kalvin, A.D., Taylor, R.H.: Superfaces:
polygonal mesh simplification with
bounded error. IEEE Comput. Graph. Appl.
16(3), 64–77 (1996)

15. Katz, S., Tal, A.: Hierarchical mesh
decomposition using fuzzy clustering and

668 H. Yamauchi et al.

cuts. ACM Trans. Graph. 22(3), 954–961
(2003)

16. Lee, A.W.F., Sweldens, W., Schröder, P.,
L. Cowsar, L., Dobkin, D.: MAPS:
Multiresolution adaptive parameterization
of surfaces. In: Proceedings of
SIGGRAPH, pp. 95–104 (1998)

17. Lévy, B., Petitjean, S., Ray, N., Maillot, J.:
Least squares conformal maps for
automatic texture atlas generation. ACM
Trans. Graph. 21(3), 362–371 (2002)

18. Liu, R., Zhang, H.: Segmentation of 3D
meshes through spectral clustering. In:
Pacific Graphics, pp. 298–305 (2004)

19. Maillot, J., Yahia, H., Verroust, A.:
Interactive texture mapping. In:
Proceedings of SIGGRAPH, pp. 27–34
(1993)

20. Mangan, A.P., Whitaker, R.T.: Partitioning
3D surface meshes using watershed
segmentation. IEEE Trans. Visual.
Comput. Graph. 5(4), 308–321
(1999)

21. Max, N.: Weights for computing vertex
normals from facet normals. J. Graph.
Tools 4(2), 1–6 (1999)

22. Mitani, J., Suzuki, H.: Making papercraft
toys from meshes using strip-based
approximate unfolding. ACM Trans. Graph.
23(3), 259–263 (2004)

23. Page, D.L., Koschan, A., Abidi, M.:
Perception-based 3d triangle mesh
segmentation using fast marching
watersheds. In: Proceedings of the
International Conference on Computer
Vision and Pattern Recognition, 2, 27–32
(2003)

24. Pottmann, H., Farin, G.E.: Developable
rational bézier and b-spline surfaces.
Comput. Aided Geom. Des. 12(5), 513–531
(1995)

25. Sander, P.V., Snyder, J., Gortler, S.J.,
Hoppe, H.: Texture mapping progressive
meshes. In: Proceedings of SIGGRAPH,
pp. 409–416 (2001)

26. Sander, P.V., Wood, Z.J., Gortler, S.J.,
Snyder, J., Hoppe, H.: Multi-chart

geometry images. In: Proceedings of the
Eurographics Symposium on Geometry
Processing (SGP-03), pp. 146–155 (2003)

27. Shamir, A.: A formulation of boundary
mesh segmentation. In: 3DPVT, pp. 82–89
(2004)

28. Shlafman, S., Tal, A., Katz, S.:
Metamorphosis of polyhedral surfaces
using decomposition. Comput. Graph.
Forum 21(3), 219–228 (2002)

29. Sorkine, O., Cohen-Or, D., Goldenthal, R.,
Lischinski, D.: Bounded-distortion
piecewise mesh parameterization. In: IEEE
Visualization, pp. 355–362 (2002)

30. Welch, W., Witkin, A.: Free-form shape
design using triangulated surfaces. In:
Proceedings of SIGGRAPH, pp. 247–256
(1994)

31. Zhou, K., Snyder, J., Guo, B., Shum, H.Y.:
Iso-charts: stretch-driven mesh
parameterization using spectral analysis. In:
Proceedings of the Eurographics
Symposium on Geometry Processing
(SGP-04), pp. 47–56 (2004)

HITOSHI YAMAUCHI is a research associate
at the Max-Planck-Institut Informatik in Saar-
brücken, Germany. He received his PhD (1997)
in Information Science from Tohoku Univer-
sity, Japan. His research interests include par-
allel global illumination, human face modeling,
image reconstruction, parameterization, and seg-
mentation.

STEFAN GUMHOLD is a professor since Octo-
ber 2005 at the Technical University of Dresden
and the head of the computer graphics and visu-
alization lab. Before that he led an independent
research group at the Max Planck Institute in
Saarbrücken. He received PhD and habilitation
from the University of Tuebingen. His research

interests include a variety of topics in geometric
modeling and scientific visualization.

RHALEB ZAYER is currently a Ph.D student
at the Max-Planck-Institut Informatik in Saar-
brücken, Germany. He received his Master’s de-
gree in Mathematics in 2002 from Drexel Uni-
versity, Philadelphia, Pa, USA. His research in-
terests include surface parameterization, remesh-
ing, and surface deformation.

HANS-PETER SEIDEL is the scientific director
and chair of the computer graphics group at the
Max-Planck-Institut (MPI) Informatik and a pro-
fessor of computer science at the University of
Saarbrücken, Germany. The Saarbrücken com-

puter graphics group was established in 1999
and currently consists of about 40 researchers.
He has published some 200 technical papers in
the field and has lectured widely on these topics.
He has received grants from a wide range of or-
ganizations, including the German National Sci-
ence Foundation (DFG), the European Commu-
nity (EU), NATO, and the German-Israel Foun-
dation (GIF).
In 2003 Seidel was awarded the ‘Leibniz Preis’,
the most prestigious German research award,
from the German Research Foundation (DFG).
Seidel is the first computer graphics researcher
to receive this award. In 2004 he was selected
as founding chair of the Eurographics Awards
Programme.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

