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ABSTRACT 
In tile area of parallel  processing, performaIice has been 
the pr imary  goal, and  historically, parallel  software writ- 
ers paid less a t t en t ion  to software portabil i ty.  However, as 
software is becoming more complicated,  costs for developing 
and xnaintaining parallel applicat ions are rapidly increasing. 
Reusable azld por table  software is certainly needed even in 
the parallel  processing area. Java  appeared on the scene 
under the slogan of "Wri te  once, run azlywhere", advertis- 
ing por tabi l i ty  as its largest advantage.  Java  Grande Forum 
was established to achieve two goals; por tabi l i ty  and high- 
performance. 

Current  Forum discussions seem to concentra te  on optimiza- 
t ion of Java  programs,  elements  of numerical  libraries, mes- 
sage passing interface for Java,  etc. Few implementa t ions  
of pract ical  applicat ions are presented so far. To find out  
obstacles in wri t ing Grand  Challenge applicat ions in Java, 
empirical  studies on developing large and pract ical  applica- 
tions in Java  are strongly desired. 

As an example of pract ical  d is t r ibuted parallel  applications,  
we have implemented  two versions of a parallel  mult i -pass 
rendering system. One version is wr i t ten  in C + +  and the  
other  is wr i t ten  in Java. The  mult i -pass rendering method  is 
a combinat ion of radiosi ty and ray- t racing methods.  These 
implementa t ions ,  about  56,000 lines in total ,  are publicly 
available at  
http ://www. archi, is. tohoku, ac. j p/research/cg/. These 
two programs are based on the  identical  a lgor i thm and are 
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directly comparable  in te rms of performance and  efficiency 
in software development.  Exper imenta l  results  on Sun En- 
terprise wi th  JDK 1.2.1 and  gcc 2.7.2 which is used only 
for compil ing message passing l ibrary  show tha t  compared 
to the  C + +  version, the  per formance  of the  Java  version is 
about  three to five t imes slower and  requires approximate ly  
four to seven t imes more  memory  space, We also discuss 
some problems encountered in developing pract ical  parallel  
d is t r ibuted  appl icat ions in Java. 

1. INTRODUCTION 
Early" researchers on paral lel  computers  paid vir tual ly  no 
a t t en t ion  to program portabi l i ty .  Since parallel  processing 
is a promising approach to solve a wide variety of complex 
or huge problems,  the  p r imary  concern of parallel process- 
ing research is to achieve high-performance.  However, it 
is hard  to develop high-performance software, while keep- 
ing their  portabil i ty.  In h igh-performance software develop- 
ments ,  special hardware  supports  are often assumed. Dedi- 
cated p rogramming  languages or p rogramming  envi romnents  
depending on par t icular  parallel  p la t forms are fairly com- 
mon. 

On the  other  hand,  as software becomes get t ing more com- 
plicated and  larger, costs for development  and main tenance  
of programs are ge t t ing  more and more expensive. In con- 
trust ,  performance improvement  of commodi ty  products  makes 
high-performance hardware  widely available at  lower cost. 
As a result,  it is not  a cost-effective idea to modify pro- 
grams whenever  they are por ted  on new platforms.  In other  
words, a l though performance is still a m a t t e r  of greatest  
impor tance ,  software por tab i l i ty  is also becoming a crucial 
issue. 

New s tandards  for For t ran ,  especially s tandard iza t ion  of 
communica t ion  libraries such as MPI  [16], and  s tandardiza-  
t ion for parallel izing compiler  directives such as OpenMP [18] 
are typical  examples of efforts to  solve this  por tabi l i ty  prob- 
lem. Enhancemen t  of exist ing laaguages,  however, cannot  
completely remove envi ronment -dependent  par t  of the  sys- 
tem. It is still very ha rd  to pursue higher performance and 
pla t form independence at  the  same time. 

In this  s i tuat ion,  Java  appeared  as an u l t imate ly  por table  
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language. At first, apt,l ications in Java  for nmnerical  com- 
puting were impract ical  because early Java  programs ran 
quite slow. However, its high por tabi l i ty  was so a t t rac t ive  
tha t  some eager a t t empts  were made  to exploit the  capabil- 
ity of Java  in the field of scientific comput ing [7]. Activities 
of Java  Grande Forum are the  most  not iceable movement  
among them. In Java  Grande  Forum, problems aald their  
possible solutions in developing numericM computa t ion  ap- 
plications ('.ailed Grande Applicat ions are being discussed. 

Java  is a new language and is still making contimmd progress 
in its sophistication. Research interests tend to be directed 
to opt imizat ion of scriM, relatively small  programs. Of tours% 
researches on pm'allel Java  ~pplications are being performed, 
though,  practical  amt laa'ge-srMe parallel applicat ions in Java  
are not yet ready for pr ime time. 

In this paper,  we present a large scale parallel appl icat ion 
wri t ten in Java. We believe it is par t icular ly  valuable to 
obta in  empiricM knowledges and experiences in building and 
using pract ical  applicat ions in Java  in this  immature  stage. 

W(" have impIemented photo-real ist ic  image synthesis pro- 
grams based on the in tegra t ion of radiosi ty attd ray-tracing 
in bo th  Java and C + + .  The  t)rogram is parallelized for 
execution on a message-passing parMlel computer .  Both  of 
implementa t ions  use the  identical  a lgor i thm and suitable for 
direct performance comparison between the  two languages. 

The  rest of the paper  is organized as follows. In Section 2, 
we will show the brief description of a parallel  multi-pass 
rendering a lgor i thm which we implemented  here. In Section 
3, we describe implementa t ions  of the  parallel  multi-pass 
rendering method  in Java  and C + + .  In Section 4, we will 
show the  exper imental  results of bo th  implementa t ions  and 
also discuss problems for developing Grande  Applications in 
Java. Section 5 concludes the  paper  wi th  a summaa'y and 
some directions for fur ther  investigations.  

2. A PARALLEL MULTI-PASS RENDERING 
METHOD: INTEGRATION OF RADIOS- 
ITY AND RAY-TRACING 

2.1 Multi-pass rendering Method 
The radiosity method and the  ray-tracing method are algo- 
r i thms tha t  generate  an image by construct ing a vir tual  
space on a computer  and s imulat ing propaga t ion  of light 
among objects modeled inside the space. The  principal  for- 
mula  is called the rendering equation, which is given by [12] 
as tbllows. 

r ( z , z ' )  = g ( x , z ' ) [ e ( ~ , x ' ) +  

p(z,x',z") g(z',z") I(z',z") dz"] 

Here, I (~ ,  z ' )  is the amount  of light energy propagated  from 
point :e' to point  z,  g(m, a~') is the  geometry t e rm represent- 
ing visibihty f rom point  :~' to ~, e(z, z') is the  amount  of light 
energy radia ted  from z '  to x, and  p(z,  z ' ,  m') is the  bidirec- 
t ional  reflection dis t r ibut ion funct ion t ha t  denotes the  ra t io  
of rays from :~" to x via x' .  

To generate photo-reMistic images, we must  solve the ren- 
dering equat ion as accurate  as possible. Applications based 
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on these a lgor i thms include l ight ing and landscape simula- 
tions tha t  require physicMly accurate  calculations. Recently, 
they are also used in computer  games, arts  and so on. Due to 
physically accurate  computa t ions  involved, however, these 
algori thms are known to be very t ime-consuming,  and this 
feature  prevents photo-real is t ic  image synthesis based on the  
rendering equat ion  from pract ical  use. 

Of the  two algor i thms above, ray- t racing [23] may be more 
popular  as a method  for generat ing photo-realist ic images. 
W h a t  we (:all " ray- t racing a lgor i thm" uses a set of a screen 
and a viewpoint  to generate an image, and traces rays from 
the viewpoint to light som'res with  reflection and /o r  refrac- 
t ion wi th  objects.  This  method  is actually referred to as 
backward 'ray-traci'ag since rays are t raced from a viewpoint 
instead of light sources. In practice,  this method does not 
have significant advantages unless rays are t raceable toward 
light sources. In other  words, surfaces need to be assumed 
as specular elements in a modeled environment.  If diffuse 
surfaces are encountered during the  backward tracing,  fur- 
ther  t racing of the  ray becomes difficult since diffuse surface 
does not preserve the  s ta te  of a ray prior to reflection. In 
short,  backward ray- t racing is an approximat ion of the ren- 
dering equat ion tha t  assumes reflection coefficient as mostly 
specular. 

In ray-tracing,  it is difficult to simulate bleeding, whidt  is an 
effect of ray propagat ion  among diffuse surfaces. To com- 
pute  the effect of bleeding, the  radiosity method [5] was 
proposed. In the  radiosi ty method,  objects are divided into 
small  discrete pieces of planes called patches. Diffuse re- 
flective propagat ion of l ight energy among patches are com- 
puted, Concretely, an ent ire  environment  is sampled by ray- 
t racing wi th  se t t ing a viewpoint  on each pa tch  and put t ing  
a small  screen called hemi-cube in front  of it. Light energy 
t ha t  affected a pa tch  is ga thered  and accumulated on it from 
the whole enviromnent ,  aald reflection energy is radiated 
again into the  envi ronment  after mult iplying the patch 's  re- 
flectivity. The  sampling process is repeated until  radiated 
energy becomes lower than  a predetermined threshold. In 
this way, the radiosi ty me thod  computes  t ranspor t  of energy 
among diffuse surfaces, and  an  image is generated by trans- 
la t ing energies of visible patches into intensities. Since the 
radiosity me thod  samples energy of l ight against  the ent ire  
environment ,  it can approximate  the  rendering equat ion by 
assuming t ha t  reflection on patches is diffuse reflective. 

The multi-pass rendering method [24] is an a lgor i thm tha t  
combines bo th  of the  two methods  to precisely capture light 
propagat ion  among bo th  dill'use and specular surfaces. In 
this  paper,  the  implementa t ions  of our parallel  renderer are 
based on the  mult i -pass rendering method.  

2.2 Parallelizing Multi-pass rendering Method 
The mult i -pass rendering me thod  is a combinat ion of the  ra- 
diosity me thod  and the  ray- t racing method.  The  radiosity 
me thod  computes  propagat ion  of l ight energy in an envi- 
ronment  mainly consist ing of diffuse surfaces, while the  ray- 
t racing me thod  calculates propagat ion  of rays in an environ- 
ment  tha t  mainly  contains specular surfaces. In the multi- 
pass rendering method,  the  propagat ion of rays among dif- 
fuse surfaces is computed  by radiosi ty first, and the equilib- 
r ium of light energy in the  diffuse envi ronment  is obtained.  



After that ,  rays propagated through specular surfaces are 
calculated by ray-tracing. In the ray-tracing phase, the re- 
sults of radiosity computat ion are used for global illumi- 
nation calculations. In this way, the multi-pass rendering 
method has a capability to ha~l(tle global diffuse reflection by 
radiosity a~ld specular reflection/refraction by ray-tracing, 
and can generate photo-realistic images. 

However, the radiosity and ray-tracing methods are both 
known as t ime-consuming algorithms. Since the multi-pass 
rendering method is a serial combination of these two, it con- 
sumes ew:n more time. Some a t tempts  for parallelizing this 
method have been proposed to accelerate the computat ions 
of the multi-pass rendering method.  

In radiosity, a visibility between any patches called a form 
factor is computed at the t ime of energy exchange. Several 
methods to exploit parallelism in this form factor computa- 
tion are well known [19, 21, 3]. These methods make use 
of the fact that  it is possible to test the visibility for each 
patch independently when testing which patches exchange 
energy each other. In s tandard radiosity methods,  a virtual 
viewpoint with a virtual screen is set on each patch with 
radiating energy. For each pixel of the virtual screen, there 
exists an opportunity of independent computations.  

In ray-tracing, it is widely known that  comp{ltations of the 
rays that  pass through each pixel can be computed indepen- 
dently and thus can be performed in parallel [1]. 

Therefore, both of parallel radiosity and parallel ray-tracing 
basically take advantage of the same source of parallelism; 
the independence of sampling at the t ime of visibility test. 

In conventional parallelizing methods,  basically no knowl- 
edge about distance between objects is used for testing exis- 
tence of interaction of light between the objects. When one 
object is selected, the whole environment has to be scanned 
to search objects interacting with the selected one. Space 
subdivision methods,  e.g. oetree [9], were proposed to make 
scanning range small. In ray-tracing, a ray issued from a 
viewpoint or an object with reflection searches an interacting 
object. In space subdivision methods where a whole space 
is subdivided into subspaces, the searching area is limited 
from the whole space to some small set of subspaces along 
the ray. Similarly, the radiosity method can employ a space 
subdivision method for visibility test to restrict the scanning 
range as in ray-tracing. 

In radiosity, radiation light from one object  influences a lot 
of the other objects since the method treats  diffuse reflec- 
tion. Therefore, each object accesses a wide range of the en- 
vironment in the radiosity method.  In ray-tracing, it is hard 
to predict the direction of rays due to reflection and refrac- 
tion. Therefore, access pat terns  of rays to the environment 
become highly irregular [1]. Therefore, in both  methods,  an 
object may access the other objects in the environment to 
exchange energy. As a result, when a ray's s tart ing point 
and its direction are decided, the objects searching area can 
be squeezed by the space subdivision method. However, as 
we cannot know the information about the searching area 
before calculation, each processor of a parallel system must 
be able to access the whole environment to find intersecting 
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objects visible on a screen. This means that  the all proces- 
sors share the one environment.  

If this type of parallel algorithms is implemented on a par- 
allel processing system with a shared memory, memory con- 
flicts will occur frequently on the shared memory as the num- 
ber of processing nodes increases, and it is hard to achieve 
linear speedups in the calculations. On the other hand, this 
could be implemented on a distr ibuted memory parallel com- 
puter with a message-passing mechanism, where objects are 
distr ibuted to each local memory. Since this type of parallel 
processing causes a large global communicat ion overhead, we 
cannot expect to achieve linear speedups when the number 
of processing nodes are increased. Another method based 
on broadcasting was proposed [6]. In this method,  a node 
called "host" broadcasts  a ray's information to all the pro- 
cessing nodes with objects '  information. However, the host 
computer  will become the bott leneck of the system perfor- 
mance. We classify these problems into a "object-sharing 
problem" since these problems are caused due to logically 
shared objects '  information. 

We thought that  the object-sharing problem is caused due 
to the fact that  the conventional parallel image synthesis al- 
gorithms usually extract  parallelism from standard sequen- 
tial image synthesis algorithms. The computat ion models of 
sequential algorithms assume the same access t ime to  'any 
address like the RAM (Random Access Machine) [14]. How- 
ever, on practical  parallel processing machines, access t ime 
is not constant  usually. A remote memory access leads to 
a higher cost than an access to local memory, and memory 
access conflicts on a shared memory will worsen this situa- 
tion. 

To  solve the object-sharing problem, we noticed that  the 
rendering equation holds in each subspace even if an ob- 
ject space is subdivided. Therefore, we subdivided a space 
to subspaces regularly and distr ibute them among parallel 
processing nodes. Ray propagat ion is simulated through 
inter-processor communications.  Each processor calculates 
ray-object interaction within allocated subspaces. In this 
paper,  we call this scheme the object-space parallel process- 
ing model. 

This method is very simple, but the performance gain of 
parallel processing will be marginal  unless objects are placed 
regularly or randomly in a scene. The reasons are: 

The occupation ratio of objects  in a space is very low 
in usual scenes. For example, it is a special case that  
object occupies more than one-half of a space when we 
design an office or house. Most part  of a room has no 
objects as we can see in an actual room. 

There is strong object  coherency along horizontal and 
vertical directions because of the effect of gravity. We 
can easily see some examples like a floor in buildings, 
ceilings, walls, and pillars. In addition, objects like 
furniture do not exist in the air suddenly, and they are 
on a floor and a wall. We can also find such examples 
in the natural  world (e.g. trees). 

In the end, we can easily see that  objects hold a little volume 



in a space and they are not uniformly distributed. Therefore, 
parallel processing using simple subspace division and simple 
allocation cannot achieve a good performance except that  
objects are regularly distr ibuted or randomly distributed. 
It may sound inconsistently that  both  the randomly distri- 
bution and the regularly distr ibution of objects can balance 
the system load. However, the random distribution means 
that  there is no bias in objects '  distribution, and therefore, 
random allocation of subspaces among processors can also 
balance the computat ional  loads of the processors as well as 
the case of regular distr ibution of objects in a space. 

Therefore, when we try to render usual scenes, we must deal 
with biased distribution of objects in a space. Adaptive 
space division is one of the solutions to solve this problem. 
However, it is difficult to allocate such irregular subspace to 
processing nodes systematically. Moreover, traversing adap- 
tively subdivided subspaces for a large number of rays leads 
to a high computat ional  costs than regularly subdivided sub- 
spaces. That  causes another new problem. 

In [13, 26], we proposed a static load-balancing scheme based 
on the object-space parallel processing model. In this static 
load-balancing scheme, a space was subdivided more finely, 
compared to the number of processing nodes, and some 
hmshing functions were used to allocate subspaces to pro- 
cessing nodes randomly. At the same time, traverse costs 
from subspace to subspace was kept low. 

Two kinds of network topologies were considered in our im- 
plementation of the static load-balancing scheme. In [13], 
ring, mesh and 3D torus topologies were taken into ac- 
count. Network topologies with constant node distance, like 
a multi-stage network, was assumed in [26]. 

In this paper, we implemented this parallel multi-pass ren- 
dering method based on the object space parallel processing 
model in both Java and C + + ,  and examined them in terms 
of execution t ime and memory space. 

3. IMPLEMENTATION OF THE PARALLEL 
MULTI-PASS RENDERING ALGORITHM 

We implemented parallel multi-pass rendering programs named 
m p i 2 C + +  and m p i 2 J a v a .  Libraries and languages that  
are used for these two implementat ions are as follows. 

• mpi2C+-4-  is wri t ten in C + +  and uses MPI (Message 
Passing Interface) in C as a communication library. 

* m p i 2 J a v a  is implemented in Java and uses MPI in C 
as a communication library. A wrapper library called 
mpiJava [2], which enables Java programs to call MPI 
library writ ten in C, was modified and used in this 
implementation.  

C / C + +  compiler and Java compiler we used for implemen- 
tations are gcc version 2.7.2 and JDK 1.2.1 production re- 
lease, respectively. We adopted mpich[17] version 1.1.2 as 
the MPI library. The mpiJava version is 1.2beta with some 
modification by the authors. 

mpi2C-4--t- contains an implementat ion of a parallel volume 
rendering method in addit ion to the multi-pass rendering of 
radiosity and ray tracing, astd the Java version can process 
multi-pass rendering only. Thus, although we cannot di- 
rectly compare the code size of the Java version with that  
of the C + +  version, we have counted the total number of 
source code lines of two programs using UNIX command 
we. The source code sizes were 31996 lines in mpi2CA--4- 
and 23833 lines in m p i 2 J a v a .  The Java program can use 
Java's rich set of s tandard libraries and tend to require less 
code size. For example, the current implementat ion in Java 
uses class Map (HashHap) to keep track of object information. 
When we had implemented the C + +  version, however, the 
stable implementat ion of class libraries such as STL had 
not been readily available. Therefore, we had to implement 
a table management  code by ourself, which resulted in an 
increase in code size. 

On the other hand, some fundamental  classes are not avail- 
able in Java class libraries. There is an implementat ion of 
Stack based on class Vector ,  but class queue is not included 
in the libraries. We first implemented a queue using class 
Vector,  but in this implementat ion,  a dequeue operation 
takes O(n) t ime where n is the number of elements in a 
queue. This is the wrong implementat ion.  Current version 
uses queue based on ring buffers developed by the authors, 
and this takes only O(1) time. 

4. EXPERIMENTAL RESULTS AND DISCUS- 
SION 

4.1 Performance evaluation parameters 
Table 2 shows the scene parameters  of our experiments. The 
number of triangle polygons are 100,000 to 220,000 in these 
test scenes. The original geometry data  can be obtained 
from Radiance web site [25]. The experiments are carried 
out on a Sun Enterprise E3500 (UltraSPARC-II 336 MHz x 
8) running under SunOS 5.6 with 1.5 GB memory. Although 
this computer  is a multi-processor machine with a shared 
memory, our implementat ion does not use shared memory 
primitives and each process uses a message passing library 
for communications. Therefore, the address space of each 
process is completely separated from the other processes. 
As a Sun Enterprise has multiple memory modules and we 
expect different process uses different memory module, the 
object-sharing problem will be avoided under this situation. 

In our implementat ions,  transmission of ray's information 
through ray-packets is needed to synthesize images. Also in 
our implementat ion,  ray-packets are buffered when they are 
sent or received, and users can control the buffer size. 

Table 1 shows a point- to-point  communication performance 
of the system using the ping-pong scheme [10]. Throughputs 
are improved as buffer size increases, however, the satura- 
tion of performance improvement is found when the size of 
buffer exceeds 2X°KB. Moreover, because buffers with too 
large size stall ray propagation in the parallel multi-pass 
rendering system, proper buffer size exists. From our prelim- 
inary experiments,  we found a suitable buffer size of around 
64(=26)KB, and this buffer size is adopted in the experi- 
ments. 
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T a b l e  1: T h r o u g h p u t  o f  P o i n t  to P o i n t  C o m m u n i c a -  
t i o n  ( M B / s e c )  on  a S u n  E n t e r p r i s e  w i t h  rupiah 

Throughput  (MB/sec) 17 39 60 67 7 3  75 

Figure 1 shows the rendering images created by m p i 2 J a v a .  
When a scene and the number of processing nodes are fixed, 
identical inputs are given to both m p i 2 J a v a  and m p i 2 C + +  
for compaxison of the Java implementat ion with C + +  im- 
plementation.  

4.2 Results 
Figures 2 and 3 show the results in elapsed t ime in each 
parallel rendering implementat ion.  We use the 
S y s t e m . c u r r e n t T i m e M i l l i s ( )  function for the m p i 2 J a v a  
and the g e t t i m e o f d a y ( )  function for the mpi2C-4--4- to 
measure the elapsed time. Since both  functions can get the 
current t ime of day, we can measure the "real" processing 
t ime including all kinds of overheads. In this measurement,  
we use three scenes to evaluate performance of b o t h  imple- 
mentations on 1, 2, 4 and 8 nodes. 

As both m p i 2 J a v a  and m p i 2 C + - t -  are based on the same 
• algorithm and have almost similar configuration of source 
codes, we think that  the comparison between two implemen- 
tations is meaningful. From the experiments,  the elapsed 
t ime of tile Java with JIT version was 3 to 5 times longer 
than that  of the C + +  version. In addition, the Java version 
without JIT takes hmger elapsed t ime in comparison with 
the Java with JIT version. In the end, the Java implemen- 
tat ion without JIT takes 9 to 25 times longer CPU cycles 
than the C + +  implementat ion.  

We also examined the memory requirement for the execu- 
tion of the Java and C + +  versions by using the unix ps  
command. Table 3 shows the memory consumption in scene 
"oJJiee'. This table includes source code size and execution 
image size : binary image size of C + +  and class file size of 
Java. RPS (Relative process size) in the table is calculated 
using the following equation. 

RPS = process size of Java implementat ion 
process size of C + +  implementat ion 

The average dynamic memory consumption sizes axe calcu- 
lated under the same number of nodes and the same scene. 
According to our results, Java's stat ic bytecode density is 
four times higher than the C + +  binary code density. Al- 
though Java bytecodes are usually t ranslated into machine 
codes by JIT at runtime, there are some processors (e.g. 
PicoJava[15]) that  can directly execute Java bytecodes as 
native codes. On such platforms, the size of a Java class file 
directly relates to the code size at runtime. Even though 
Java is profitable in terms of static code size density, the 
dynamic execution image size of the Java version is huge, 
and this is a serious disadvantage of this Java implementa- 
tion. The Java version consumes 4 to 7 times more memory 
space in comparison with the C + +  version. 

1 

In addition, we measured elapsed t ime of reading modeling 
data  into the memory in order to examine I /O performance. 

T a b l e  3: M e m o r y  R e q u i r e m e n t  o f  m p i 2 C + +  a n d  
m p i 2 J a v a  p e r  n o d e  (Off ice)  a n d  t h e i r  R P S  ( R e l a t i v e  
P r o c e s s  S i z e )  

of Nodes 1 2 4 8 code size 
C + +  (MB) 58 34 27 19 1.6 (MB) 
Java (MB) 247 233 129 80 0.4 (MB) 
R P S  4.3 6.6 4.8 4.2 - -  

20000  

10000 

2 4 

Number of Nodes 

C + +  : O f f i c e -  
C + +  : Soda 
C++ : C 0 n f  
J a v a  : Of f i ce  
J a v a  : S o d a  
J a v a  : C o n f  

8 

F i g u r e  2: E l a p s e d  T i m e  o f  P a r a l l e l  R a d i o s i t y  

The results are shown in Table 4. We found tha t  the UTF 
conversion filter works when reading an ASCII file. We also 
measured this effect. Exper imental  results show that  the 
overhead of the UTF conversion filter reaches 10 to 20e/0 of 
execution t ime for reading. If you do not want to use the 
UTF conversion filter, you specify encoding "ASCII" at class 
constructor InputSt reamReader  m your code Explicitly, or 
set the locale environment to "C". (i.e., type s e t en v  LANG C 
in the csh environment.)  It is a good idea to set the encoding 
ASCII if you can assume an input file is always in an ASCII 
format.  

In the experiments,  the execution t ime of the radiosity method 
is 25 times longer than tha t  of the ray-tracing method.  The 
behaviors of both  the Java and C + +  programs have almost 
a similar tendency in changing the number of nodes and 
varying scenes. In other  words, we cannot find any qualita- 
tive differences between two implementat ions.  Remarkable 
differences between them are in only quanti tat ive aspects 
like execution t ime and quanti t ies of memory consumption. 

4.3 Discussion and Future Work 
Through our measurements  with Sun JDK, differences in 
performance and memory efficiency in the case when the 
same programmers implemented same algori thm is demon- 
strated. Although behaviors of small Java programs had 
been studied to some extent ,  results on large scale programs 
axe hardly seen in the li terature. In this paper,  a practi- 
cal application was implemented in two languages; Java and 
C + + ,  and comparison of the behaviors of%he two programs 
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T a b l e  2: P a r a m e t e r s  o f  T e s t  S c e n e s  
Test Scene 
Number of Patches 
Number of Subspaces 
Hemi-Cube Resolution (pixels/top surface) 
Max Number of Reflections 
Screen Size (pixels) 
Number of Sampling Rays Per Pixel 
Ray Coalescing Factor 
Radiosity Energy Convergence Tolerance 

(a) Omce I (b) Soda Shop ] (c) Conference Room 
102,824 ] 133,668 ] 226,621 

64 × 64 x 64 (---- 262,144) 
40 X 40 

3 
512 X 512 

4 
256, 512 

83 % I 75 % I 84 % 

(a) Office (b) Soda Shop 

F i g u r e  1: T e s t  I m a g e s  

(c) Conference Room 

800 

m 
200 

• C++ Office 
~1 C++ Soda 
• C++ Conf 
• Java Office 
El Java Soda 
0 Java Conf 

1 2 8 

Number of Nodes 

F i g u r e  3: E l a p s e d  T i m e  o f  P a r a l l e l  R a y - T r a c i n g  

are made.  In terms of processor performance and I /O  perfor- 
mance,  Java implementa t ion  takes three to five t imes more  
execution t ime in compar ison with the  C + +  implementa-  
tion. W h e n  JIT is turned off, tile Java version requires 9 to 
25 t imes more elapsed time. 

Our message passing l ibrary for Java  version is based on 
mpiJava  which is implemented  by using the JNI (Java Na- 
tive Interface) [22] for the  MPI  library. In most  of cases 
of using JNI protocol,  each element  of a da t a  array mus t  
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T a b l e  4: E l a p s e d  T i m e  o f  D a t a  R e a d  
Scene (a) Office (b) Soda (c) ConI 

Size of data file (MB) 7.6 10.7 19.1 
C + +  (see) 5.6 7.4 12.6 

JIT 28.6 36.3 63.5 
Java no JIT 263.2 352.1 614.8 
(see) UTF & JIT 34.0 39.4 71.2 

UTF & no JIT 315.3 417.2 726.4 

be copied to an  array of communica t ion  buffer instead of 
only informing the s tar t  pointer  of a da ta  array to the  com- 
munica t ion  sys tem.  This  da t a  copy processing will be an 
overhead. It is a na tu ra l  quest ion tha t  the overhead causes 
the ma in  difference of performance between Java version and 
C + +  version. However, figures 2 and 3 also show the case 
of the  one node. In our implementa t ion ,  the communica-  
t ion l ibrary is not called when the number  of nodes is one. 
In such a case, the  difference of elapsed t ime between C + +  
and Java version is a round three. Therefore,  the overhead 
of calling communica t ion  l ibrary is not dominant  element.  
However, in C + +  version, there is some performance im- 
provement  f rom one node to two nodes. On the other hand,  
in Java  version, we can see some performance degradat ion 
from one node to two nodes. Accordingly, the overhead of 
calling communica t ion  l ibrary of Java  version seems some- 
what  larger than  C + +  one. We need more detailed obser- 
vation of tile overhead of calling communica t ion  library in 
future.  

Even when taking high product iv i ty  of Java into account,  



three-fold performance degradat ion  in numerical  computa-  
t ion is almost  unacceptable.  However, Java  Grande  Forum 
is working on extensions of Java  language to enhance Java  
applicat ion performance.  We are going to introduce these 
extensions into our implementa t ions  and examine their  per- 
forinance. 

Java  Grande Foruiii also proposes a number  of benchmark  
programs [11, 4, 20]. One of the  benchmark  suites called Sci- 
mark2.0 [20], for example,  consists of applets t ha t  execute 
FFT,  Sparse Matr ix  Multiply, Monte  Carlo integrat ion,  and 
SOR method.  This  benchmark  suite, however, completes 
execution within only one minu te  on Pen t ium Pro  266MHz. 
Presumably,  this is because one of the  purposes of the suite 
is to gather  as many  results as possible f rom a wide vari- 
ety of machines.  However, wi th  the goal of Java  Grande  
in mind,  the scale of the  program seems to be too small. 
The  benchmark  used in [8] is also small  as a Grande  appli- 
cation; it is one of the class A programs in NASPara  suite 
tha t  sorts an array of 8M integers. The  Ray-Tracing prob- 
lem in Large Scale Applicat ions category of the  benchmark  
suite vet. 2.0 [11] proposed by Java  Grande  Forum Applica- 
t ion and Concurrency Working Group ( J G A C W G )  contains 
only 64 objects.  In contrast ,  the  number  of objects  in each 
scene we used here is in the  order of 100,000 to 200,000. 
The  Ray-Tracing benchmark  program of J G A C W G  in Large 
Scale Applications uses RMI for the d is t r ibuted  ray- t racing 
method  and can be used to figure out  common problems in 
dis t r ibuted comput ing with Java,  but  the  size of the  prob- 
lem is too small  in the  cr i ter ia  of current  CG research as a 
scene rendering problem. To fill up the  lack of large scale 
problems, we are p lanning to open the  software we used in 
tim experiments  to the public and  to propose: it as one of 
the benchmarks.  We are cer tain t ha t  we must  explore a 
possibility of Java  in pract ical  and large-scale problems in 
the  future. 

Even though performance is obviously a great concern, mem- 
ory consumpt ion was also a serious problem. In the  numeri-  
cal computa t ion  area, many  of applicat ions consume a large 
amount  of memory. Such a large memory consumpt ion  as 
shown in the experiments  restricts the  applicabil i ty  of Java  
in this area. Even if systems with garbage collection may 
work well when a relatively larger memory  space say, two to 
three t imes larger memory  area t han  actually live da ta  size 
is given, 7 t imes larger memory  consumpt ion observed in our 
experiments  is a lmost  hopeless. In many programs including 
ours, memory requirements  effectively l imit  the  size of solv- 
able problems. The  cause of this  large memory  footpr int  is 
not clear at  present.  It may be due to f ragmenta t ion ,  object  
header  or other  Java-specific storage overheads, or hidden 
object  references created implici t ly inside the  class libraries. 
There  is a possibility of memory  leak in our version of the  
communicat ion library, but  it is unlikely because memory 
consumption was s table  th roughout  hours of computa t ion  
t ime after rapid growth in s tar tup.  We coded carefully to 
avoid references to unnecessary objects.  For example, we 
explicitly assigned null to the  unused indices (i.e. not in the  
range between head and tail)  of arrays tha t  keep objects in 
ring buffers. Otherwise, the garbage collector cannot  reclaim 
objects pointed to by these array portions.  It is surprise for 
us tha t  memory  consumpt ion  was so large in spite of these 
careful coding. Research to save run t ime  memory  consump- 

t ion might  perhaps  be given higher priority, since memory  
consumpt ion  is current ly  more restr ic t ive than  speed in large 
scale comput ing in Java. 

There  is a possibili ty t ha t  the  Sun's  Java  implementa t ion  
holds more large size memory  t han  real use. Then,  our ob- 
servation wi th  unix ps  command  could be misleading. How- 
ever, our parallel  process was somet imes finished because of 
memory  exhaus t ing  on the  Sun Enterprise.  From a practi-  
cal s tandpoint ,  the  observat ion by ps  command  may be one 
of the  first order approximat ions .  Of course, more detailed 
observat ion for memory  consumpt ion  of Java  is needed. We 
hope our implementa t ion  helps such a s tudy for a grande 
application.  

5. CONCLUSIONS 
Previous work in scientific computa t ions  in Java  lacks the  
following viewpoint:  

• Comparison of capabil i t ies  of Java  wi th  those of other  
language (e.g. C + + )  th rough  implementa t ion  of large 
scale appl ica t ion by t h e  same programmer .  

W i t h  regard to this  point ,  comparable  performance of Java  
implementa t ion  to C + +  implementa t ion  is a current  target  
for Java  appl icat ions to  catch up. In addi t ion to pursui t  of 
performance of basic operat ions  such as ma t r ix  operat ions,  
empirical  s tudy on real world appl icat ions is essential. For 
this  purpose,  we presented an  example of pract ical  applica- 
t ions by implement ing  a d is t r ibuted  parallel  radiosi ty and 
ray- t racing me thod  in two languages,  and compared these 
two implementa t ions  in t e rms  speed and memory  require- 
ment .  Measurement  showed tha t  our Java  implementa t ion  
is approximate ly  three  to five t imes slower in bo th  computa-  
t ion and I / O  operat ions  compared  to its C + +  counterpar t .  

Benchmark  programs current ly  proposed by Java  Grande  
are relat ively small. We believe t ha t  our experience provides 
new insights and cont r ibutes  to a basis for solving problems 
t ha t  would be encountered when developing large pract ical  
appl icat ions in Java.  Thus,  we propose a parallel  radiosity 
me thod  and a parallel  ray- t rac ing me thod  to be included in 
the  future  benchmark  suite. 

It is known tha t  memory  consumpt ion  of Java  programs are 
large when compared to t rad i t iona l  languages like C + + .  In 
our experiments ,  the  difference in memory  requirement  ap- 
peared to be larger t han  the  difference in processing speed. 
Inefficient memory  usage is cri t ical  because the  amount  of 
memory  often determines  the  max imum problem size tha t  
can be solved on a given computer  system. 

Current ly  we are p lanning  to carry out  some exper iments  on 
other  platforms in addi t ion  to Sun workstat ions.  Besides, to 
make our system more complete  as a pract ical  appl icat ion 
benchmark ,  we are p lanning  to include volume rendering as 
well as radiosi ty and ray tracing.  
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