Developing a Practical Parallel Multi-pass Renderer
in Java and C++

— Toward a Grande Application in Java —

Hitoshi YAMAUCHI"
Denkituusin University, GSIS
Tokyo, Japan

yamauchi@archi.
is.tohoku.ac.jp

ABSTRACT

In the area of parallel processing, performarice has been
the primary goal, and historically, parallel software writ-
ers paid less attention to software portability. However, as
software is becoming more complicated, costs for developing
and maintaining parallel applications are rapidly increasing.
Reusable and portable software is certainly needed even in
the parallel processing area. Java appeared on the scene
under the slogan of “Write once, run anywhere”, advertis-
ing portability as its largest advantage. Java Grande Forum
was established to achieve two goals; portability and high-
performance.

Current Forum discussions seem to concentrate on optimiza-
tion of Java programs, elements of numerical libraries, mes-
sage passing interface for Java, etc. Few implementations
of practical applications are presented so far. To find out
obstacles in writing Grand Challenge applications in Java,
empirical studies on developing large and practical applica-
tions in Java are strougly desired.

As an example of practical distributed parallel applications,
we have implemented two versions of a parallel multi-pass
rendering system. One version is written in C++ and the
other is written in Java. The multi-pass rendering method is
a combination of radiosity and ray-tracing methods. These
implementations, about 56,000 lines in total, are publicly
available at

http://wwv.archi.is.tohoku.ac.jp/research/cg/. These
two programs are based on the identical algorithm and are

*Current affiliation: Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany

fCurrent affiliation: University of Tsukuba, Science Infor-
mation Processing Center ‘

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, 10 post on servers or to redistribute 1o lists,
requires prior specific permission and/or a fee.

Java 2000 San Francisco CA USA

Copyright ACM 2000 1-58113-288-3/00/6...$5.00

ACM 2000 Java Grande San Francisco, California, June 3-4, 2000

126

Atusi MAEDA'
Denkituusin University, GSIS
Tokyo, Japan

maeda@is.uec.ac.jp

Hiroaki KOBAYASHI
Tohoku University, GSIS
Sendai, Japan

koba@archi.is.tohoku.ac.jp

directly comparable in terms of performance and efficiency
in software development. Experimental results on Sun En-
terprise with JDK 1.2.1 and gec 2.7.2 which is used only
for compiling message passing library show that compared
to the C++ version, the performance of the Java version is
about three to five times slower and requires approximately
four to seven times more memory space. We also discuss
some problems encountered in developing practical parallel
distributed applications in Java.

1. INTRODUCTION

Early researchers on parallel computers paid virtually no
attention to program portability. Since parallel processing
is a promising approach to solve a wide variety of complex
or huge problems, the primary concern of parallel process-
ing research is to achieve high-performance. However, it
is hard to develop high-performance software, while keep-
ing their portability. In high-performance software develop-
ments, special hardware supports are often assumed. Dedi-
cated programming languages or programming environments
depending on particular parallel platforms are fairly com-
mon.

On the other hand, as software becomes getting more com-
plicated and larger, costs for development and maintenance
of programs are getting more and more expensive. In con-
trast, performance improvement of commodity products makes
high-performance hardware widely available at lower cost.
As a result, it is not a cost-effective idea to modify pro-
grams whenever they are ported on new platforms. In other
words, although performance is still a matter of greatest
importance, software portability is also becoming a crucial
issue.

New standards for Fortran, especially standardization of
communication libraries such as MPI {16], and standardiza-
tion for parallelizing compiler directives such as OpenMP (18]
are typical examples of efforts to solve this portability prob-
lem. Enhancement of existing languages, however, cannot
completely remove environment-dependent part of the sys-
tem. It is still very hard to pursue higher performance and
platform independence at the same time.

In this situation, Java appeared as an ultimately portable

language. At first, applicatious in Java for numerical com-
puting were impractical because carly Java programns ran
quite slow. However, its high portability was so attractive
that some eager attempts were made to exploit the capabil-
ity of Java in the field of scientific computing {7]. Activities
of Java Grande Forum are the most noticeable movement
among them. In Java Grande Forum, problems and their
possible solutions in developing numerical computation ap-
plications called Grande Applications are being discussed.

Java is a uew language and is still making continned progress
in its sophistication. Research interests tend to be directed
to optimization of serial, relatively small programs. Of course,
researches on parallel Java applications are being performed,
thongh, practical and large-scale paraliel applications in Java
are not yet ready for prime time.

In this paper, we present a large scale parallel application
written in Java. We believe it is particularly valuable to
obtain empirical knowledges and experiences in building and
using practical applications in Java in this immature stage.

We have implemented photo-realistic image synthesis pro-
grams based on the integration of radiosity and ray-tracing
in both Java and C++. The program is parallelized for
cxeention on a message-passing parallel computer. Both of
implementations use the identical algorithm and suitable for
direct performance comparison between the two languages.

The rest of the paper is organized as follows. In Section 2,
we will show the brief description of a parallel multi-pass
rendering algorithm which we implemented here. In Section
3, we describe implementations of the parallel multi-pass
rendering method in Java and C++. In Section 4, we will
show the experimental results of both implementations and
also discuss problems for developing Grande Applications in
Java. Section 5 concludes the paper with a summary and
some directions for further investigations.

2. APARALLEL MULTI-PASS RENDERING
METHOD: INTEGRATION OF RADIOS-
ITY AND RAY-TRACING

2.1 Multi-pass rendering Method

The radiosity method and the ray-tracing method are algo-
rithms that generate an image by comstructing a virtual
space on a computer and simulating propagation of light
among objects modeled inside the space. The principal for-
mula is called the rendering equation, which is given by {12}
as follows.

I(l‘,l") = g(myzl)[e(z>zl)+

/ p(z,z',x") g(z',z”) I(z',z”) d.’t”]
]

Here, I{z,z') is the amount of light energy propagated from
point ' to point x, g(z,x') is the geometry term represent-
ing visibility from point 2’ to z, e(z,z’) is the amount of light
energy radiated from 2’ to z, and p(z,z’,2") is the bidirec-
tional reflection distribution function that denotes the ratio
of rays from z" to z via z’.

To generate photo-realistic images, we must solve the ren-
dering equation as accurate as possible. Applications based

127

on these algorithms include lighting and landscape simula-
tions that require physically accurate calculations. Recently,
they are also used in computer games, arts and so on. Due to
physically accurate computations involved, however, these
algorithms are known to be very time-consuming, and this
feature prevents photo-realistic image synthesis based on the
rendering equation from practical use.

Of the two algorithms above, ray-tracing [23] may be more
popular as a method for generating photo-realistic images.
What we call “ray-tracing algorithm” uses a set of a screen
and a viewpoint to generate an image, and traces rays from
the viewpoint to light sources with reflection and/or refrac-
tion with objects, This method is actually referred to as
backward ray-tracing since rays are traced from a viewpoint
instead of light sources. In practice, this method does not
have significant advantages unless rays are traceable toward
light sources. In other words, surfaces need to be assumed
as specular elements in a modeled environment. If diffuse
surfaces are encountered during the backward tracing, fur-
ther tracing of the ray becomes difficult since diffuse surface
does not preserve the state of a ray prior to reflection. In
short, backward ray-tracing is an approximation of the ren-
dering equation that assumes reflection coeflicient as mostly
specular,

In ray-tracing, it is difficult to simulate bleeding, which is an
effect of ray propagation among diffuse surfaces. To com-
pute the effect of bleeding, the radiosity method [5] was
proposed. In the radiosity method, objects are divided into
small discrete pieces of planes called patches. Diffuse re-
flective propagation of light energy among patches are com-
puted. Concretely, an entire environment is sampled by ray-
tracing with setting a viewpoint on each patch and putting
a small screen called hemi-cube in front of it. Light energy
that affected a patch is gathered and accumulated on it from
the whole environment, and reflection energy is radiated
again into the environment after multiplying the patch’s re-
flectivity. The sampling process is repeated until radiated
energy becomes lower than a predetermined threshold. In
this way, the radiosity method computes transport of energy
among diffuse surfaces, and an image is generated by trans-
lating energies of visible patches into intensities. Since the
radiosity method samples energy of light against the entire
environment, it can approximate the rendering equation by
assuming that reflection on patches is diffuse reflective.

The multi-pass rendering method [24] is an algorithm that
combines both of the two methods to precisely capture light
propagation among both diffuse and specular surfaces. In
this paper, the implementations of our parallel renderer are
based on the multi-pass rendering method.

2.2 Parallelizing Multi-pass rendering Method
The multi-pass rendering method is a combination of the ra-
diosity method and the ray-tracing method. The radiosity
method computes propagation of light energy in an envi-
ronment mainly consisting of diffuse surfaces, while the ray-
tracing method calenlates propagation of rays in an environ-
ment that mainly contains specular surfaces. In the multi-
pass rendering method, the propagation of rays among dif-
fuse surfaces 1s computed by radiosity first, and the equilib-
rium of light energy in the diffuse environment is obtained.

After that, rays propagated through specular surfaces are
calculated by ray-tracing. In the ray-tracing phase, the re-
sults of radiosity computation are used for global illumi-
nation calculations. In this way, the multi-pass rendering
method has a capability to handle global diffuse reflection by
radiosity and specular reflection/refraction by ray-tracing,
and can generate photo-realistic images.

However, the radiosity and ray-tracing methods are both
known as time-consuming algorithms. Since the multi-pass
rendering method is a serial combination of these two, it con-
sumes even more time. Some attempts for parallelizing this
method have been proposed to accelerate the computations
of the multi-pass rendering method.

In radiosity, a visibility between any patches called e form
factor is computed at the time of energy exchange. Several
methods to exploit parallelism in this form factor computa-
tion are well known [19, 21, 3]. These methods make use
of the fact that it is possible to test the visibility for each
patch independently when testing which patches exchange
energy each other. In standard radiosity methods, a virtual
viewpoint with a virtual screen is set on each patch with
radiating energy. For each pixel of the virtual screen, there
exists an opportunity of independent computations.

In ray-tracing, it is widely known that computations of the
rays that pass through each pixel can be computed indepen-
dently and thus can be performed in parallel [1].

Therefore, both of parallel radiosity and parallel ray-tracing
basically take advantage of the same source of parallelism;
the independence of sampling at the time of visibility test.

In conventional parallelizing methods, basically no knowl-
edge about distance between objects is used for testing exis-
tence of interaction of light between the objects. When one
object is selected, the whole environment has to be scanned
to search objects interacting with the selected omne. Space
subdivision methods, e.g. octree [9], were proposed to make
scanning range small. In ray-tracing, a ray issued from a
viewpoint or an object with reflection searches an interacting
object. In space subdivision methods where a whole space
is subdivided into subspaces, the searching area is limited
from the whole space to some small set of subspaces along
the ray. Similarly, the radiosity method can employ a space
subdivision method for visibility test to restrict the scanning
range as in ray-tracing.

In radiosity, radiation light from one object influences a lot
of the other objects since the method treats diffuse reflec-
tion. Therefore, each object accesses a wide range of the en-
vironment in the radiosity method. In ray-tracing, it is hard
to predict the direction of rays due to reflection and refrac-
tion. Therefore, access patterns of rays to the environment
become highly irregular [1]. Therefore, in both methods, an
object may access the other objects in the environment to
exchange energy. As a result, when a 1'a.y’s‘sta,rting point
and its direction are decided, the objects searching area can
be squeezed by the space subdivision method. However, as
we cannot know the information about the searching area
before calculation, each processor of a parallel systemn must
be able to access the whole environment to find intersecting

objects visible on a screen. This means that the all proces-
sors share the one environment.

If this type of parallel algorithms is implemented on a par-
allel processing system with a shared memory, memory con-
flicts will occur frequently on the shared memory as the num-
ber of processing nodes increases, and it is hard to achieve
linear speedups in the calculations. On the other hand, this
could be implemented on a distributed memory parallel com-
puter with a message-passing mechanism, where objects are
distributed to each local memory. Since this type of parallel
processing causes a large global communication overhead, we
cannot expect to achieve linear speedups when the number
of processing nodes are increased. Another method based
on broadcasting was proposed [6]. In this method, a node
called “host” broadcasts a ray’s information to all the pro-
cessing nodes with objects’ information. However, the host
computer will become the bottleneck of the system perfor-
mance. We classify these problems into a “object-sharing
problem” since these problems are caused due to logically
shared objects’ information.

We thought that the object-sharing problem is caused due
to the fact that the conventional parallel image synthesis al-
gorithms usually extract parallelism from standard sequen-
tial image synthesis algorithms. The computation models of
sequential algorithms assume the same access time to ‘any
address like the RAM (Random Access Machine) [14]. How-
ever, on practical parallel processing machines, access time
is not constant usually. A remote memory access leads to
a higher cost than an access to local memory, and memory
access conflicts on a shared memory will worsen this situa-
tion.

‘To solve the object-sharing problem, we noticed that the

rendering equation holds in each subspace even if an ob-
ject space is subdivided. Therefore, we subdivided a space
to subspaces regularly and distribute them among parallel
processing nodes. Ray propagation is simulated through
inter-processor communications. Each processor calculates
ray-object interaction within allocated subspaces. In this
paper, we call this scheme the object-space parallel process-
ing model.

This method is very simple, but the performance gain of
parallel processing will be marginal unless objects are placed
regularly or randomly in a scene. The reasons are:

e The occupation ratio of objects in a space is very low
in usual scenes. For example, it is a special case that
object occupies more than one-half of a space when we
design an office or house. Most part of a room has no
objects as we can see in an actual room.

e There is strong object coherency along horizontal and
vertical directions because of the effect of gravity. We
can easily see some examples like a floor in buildings,
ceilings, walls, and pillars. In addition, objects like
furniture do not exist in the air suddenly, and they are
on a floor and a wall. We can also find such examples
in the natural world (e.g. trees).

In the end, we can easily see that objects hold a little volume

in a space and they are not uniformly distributed. Therefore,
parallel processing using simple subspace division and simple
allocation cannot achieve a good performance except that
objects are regularly distributed or randomly distributed.
It may sound inconsistently that both the randomly distri-
bution and the regularly distribution of objects can balance
the system load. However, the random distribution means
that there is no bias in objects’ distribution, and therefore,
random allocation of subspaces among processors can also
balance the computational loads of the processors as well as
the case of regular distribution of objects in a space.

Therefore, when we try to render usual scenes, we must deal
with biased distribution of objects in a space. Adaptive
space division is one of the solutions to solve this problem.
However, it is difficult to allocate such irregular subspace to
processing nodes systematically. Moreover, traversing adap-
tively subdivided subspaces for a large number of rays leads
to a high computational costs than regularly subdivided sub-
spaces. That causes another new problem.

In [13, 26], we proposed a static load-balancing scheme based
on the object-space parallel processing model. In this static
load-balancing scheme, a space was subdivided more finely,
compared to the number of processing nodes, and some
hashing functions were used to allocate subspaces to pro-
cessing nodes randomly. At the same time, traverse costs
from subspace to subspace was kept low.

Two kinds of network topologies were considered in our im-
plementation of the static load-balancing scheme. In [13],
ring, mesh and 3D torus topologies were taken into ac-
count. Network topologies with constant node distance, like
a multi-stage network, was assumed in [26].

In this paper, we implemented this parallel multi-pass ren-
dering method based on the object space parallel processing
model in both Java and C++, and examined them in terms
of execution time and memory space.

3. IMPLEMENTATION OF THE PARALLEL
MULTI-PASS RENDERING ALGORITHM

We implemented parallel multi-pass rendering programs named

mpi2C++ and mpi2Java. Libraries and languages that
are used for these two implementations are as follows.

e mpi2C++ is written in C++ and uses MPI (Message
Passing Interface) in C as a communication library.

¢ mpi2Java is implemented in Java and uses MPI in C
as a communication library. A wrapper library called
mpiJava [2], which enables Java programs to call MPI
library written in C, was modified and used in this
implementation.

C/C++ compiler and Java compiler we used for implemen-
tations are gce version 2.7.2 and JDK 1.2.1 production re-
lease, respectively. We adopted mpich|17] version 1.1.2 as
the MPI library. The mpiJava version is 1.2beta with some
modification by the authors.

129

mpi2C++ contains an implementation of a parallel volume
rendering method in addition to the multi-pass rendering of
radiosity and ray tracing, and the Java version can process
multi-pass rendering only. Thus, although we cannot di-
rectly compare the code size of the Java version with that
of the C++ version, we have counted the total number of
source code lines of two programs using UNIX command
wc. The source code sizes were 31996 lines in mpi2C++
and 23833 lines in mpi2Java. The Java program can use
Java’s rich set of standard libraries and tend to require less
code size. For example, the current implementation in Java
uses class Map (HashMap) to keep track of object information.
When we had implemented the C++ version, however, the
stable implementation of class libraries such as STL had
not been readily available. Therefore, we had to implement
a table management code by ourself, which resulted in an
increase in code size.

On the other hand, some fundamental classes are not avail-
able in Java class libraries. There is an implementation of
Stack based on class Vector, but class Queue is not included
in the libraries. We first implemented a Queue using class
Vector, but in this implementation, a dequeue operation
takes O(n) time where n is the number of elements in a
queue. This is the wrong implementation. Current version
uses Queue based on ring buffers developed by the authors,
and this takes only O(1) time.

4. EXPERIMENTAL RESULTS AND DISCUS-

SION

4.1 Performance evaluation parameters

Table 2 shows the scene parameters of our experiments. The
number of triangle polygons are 100,000 to 220,000 in these
test scenes. The original geometry data can be obtained
from Radiance web site {25]. The experiments are carried
out on a Sun Enterprise E3500 (UltraSPARC-II 336 MHz x
8) running under SunOS 5.6 with 1.5 GB memory. Although
this computer is a multi-processor machine with a shared
memory, our implementation does not use shared memory
primitives and each process uses a message passing library
for communications. Therefore, the address space of each
process is completely separated from the other processes.
As a Sun Enterprise has multiple memory modules and we
expect different process uses different memory module, the
object-sharing problem will be avoided under this situation.

In our implementations, transmission of ray’s information
through ray-packets is needed to synthesize images. Also in
our implementation, ray-packets are buffered when they are
sent or received, and users can control the buffer size.

Table 1 shows a point-to-point communication performance
of the system using the ping-pong scheme {10]. Throughputs
are improved as buffer size increases, however, the satura-
tion of performance improvement is found when the size of
buffer exceeds 2'°KB. Moreover, because buffers with too
large size stall ray propagation in the parallel multi-pass
rendering system, proper buffer size exists. From our prelim-
inary experiments, we found a suitable buffer size of around
64(=2°)KB, and this buffer size is adopted in the experi-

ments.

Table 1: Throughput of Point to Point Communica-
tion (MB/sec) on a Sun Enterprise with mpich

Buffer size(KB) 272828 [2% [2°
Throughput (MB/sec) | 17 [39 | 60 | 67 | 73

912
75

Figure 1 shows the rendering images created by mpi2Java.
When a scene and the number of processing nodes are fixed,
identical inputs are given to both mpi2Java and mpi2C++
for comparison of the Java implementation with C4++4 im-
plementation.

4.2 Results

Figures 2 and 3 show the results in elapsed time in each
parallel rendering implementation. We use the
System.currentTimeMillis() function for the mpi2Java
and the gettimeofday() function for the mpi2C++ to
measure the elapsed time. Since both functions can get the
current time of day, we can measure the “real” processing
time including all kinds of overheads. In this measurement,
we use three scenes to evaluate performance of both imple-
mentations on 1, 2, 4 and 8 nodes.

As both mpi2Java and mpi2C++ are based on the same

-algorithm and have almost similar configuration of source
codes, we think that the comparison between two implemen-
tations is meaningful. From the experiments, the elapsed
time of the Java with JIT version was 3 to 5 times longer
than that of the C++ version. In addition, the Java version
without JIT takes longer elapsed time in comparison with
the Java with JIT version. In the end, the Java implemen-
tation without JIT takes 9 to 25 times longer CPU cycles
than the C++ implementation.

We also examined the memory requirement for the execu-
tion of the Java and C+4 versions by using the unix ps
command. Table 3 shows the memory consumption in scene
“office”. This table includes source code size and execution
image size : binary image size of C++ and class file size of
Java. RPS (Relative process size) in the table is calculated
using the following equation.

process size of Java implementation

RPS = - - -
process size of C++4 implementation
The average dynamic memory consumption sizes are calcu-
lated under the same number of nodes and the same scene.
According to our results, Java’s static bytecode density is
four times higher than the C++ binary code density. Al-
though Java bytecodes are usually translated into machine
codes by JIT at runtime, there are some processors (e.g.
PicoJava[l5]) that can directly execute Java bytecodes as
native codes. On such platforms, the size of a Java class file
directly relates to the code size at runtime. Even though
Java is profitable in terms of static code size density, the
dynamic execution image size of the Java version is huge,
and this is a serious disadvantage of this Java implementa-
tion. The Java version consumes 4 to 7 times more memory
space in comparison with the C+4 version.
1

In addition, we measured elapsed time of reading modeling
data into the memory in order to examine I/O performance.

130

Table 3: Memory Requirement of mpi2C++ and
mpi2Java per node (Office) and their RPS (Relative
Process Size)

of Nodes 1 2 4 8 || code size
C++ (MB) 58 34 27| 19 || 1.6 (MB)
Java (MB) || 247 |{ 233 | 129 | 80 || 0.4 (MB)
RPS 43| 66} 4.8 1 4.2 —
B C++ : Office o
M C++: Soda
C++ : Conf -
B Java : Office
B Java: Soda T
0 Java: Conf

Elapsed Time (sec)

Number of Nodes

Figure 2: Elapsed Time of Parallel Radiosity

The results are shown in Table 4. We found that the UTF
conversion filter works when reading an ASCII file. We also
measured this effect. Experimental results show that the
overhead of the UTF conversion filter reaches 10 to 20% of
execution time for reading. If you do not want to use the
UTF conversion filter, you specify encoding “ASCII” at class
constructor InputStreamReader in your code Explicitly, or
set the locale environment to “C”. (i.e., type setenv LANG C
in the csh environment.) It is a good idea to set the encoding
ASCII if you can assume an input file is always in an ASCII
format.

In the experiments, the execution time of the radiosity method
is 25 times longer than that of the ray-tracing method. The
behaviors of both the Java and C++ programs have almost
a similar tendency in changing the number of nodes and
varying scenes. In other words, we cannot find any qualita-
tive differences between two implementations. Remarkable
differences between them are in only quantitative aspects
like execution time and quantities of memory consumption.

4.3 Discussion and Future Work

Through our measurements with Sun JDK, differences in
performance and memory efliciency in the case when the
same programmers implemented same algorithm is demon-
strated. Although behaviors of small Java programs had
been studied to some extent, results on large scale programs
are hardly seen in the literature. In this paper, a practi-
cal application was implemented in two languages; Java and
C++, and comparison of the behaviors of the two programs

Table 2: Parameters of Test Scenes

Test Scene (a) Office | (b) Soda Shop | {c) Conference Room
" Number of Patches 102,824 133,668 226,621
| Number of Subspaces 64 X 64 X 64 (= 262,144)

Hemi-Cube Resolution (pixels/top surface) 40 X 40

Max Number of Reflections 3

Screen Size (pixels) 512 X 512

Number of Sampling Rays Per Pixel 4

Ray Coalescing Factor 256, 512

Radiosity Energy Convergence Tolerance 83 % | 75 %] 84 %

(a) Office

(b) Soda Shop

(c) Conference Room

Figure 1: Test Images

: Office _|
: Soda
: Conf
: Office 7
: Soda
: Conf

Deapam

Elapsed Time (sec)

T

Number of Nodes

Figure 3: Elapsed Time of Parallel Ray-Tracing

are made. In terms of processor performance and 1/0O perfor-
mance, Java implementation takes three to five times more
execution time in comparison with the C++4 implementa-
tion. When JIT is turned off, the Java version requires 9 to
25 times more elapsed time.

Our message passing library for Java version is based on
mpiJava which is implemented by using the JNI (Java Na-
tive Interface) [22] for the MPI library. In most of cases
of using JNI protocol, each element of a data array must

131

Table 4: Elapsed Time of Data Read

Scene (a) Office | (b) Soda | (c) Conf

Size of data file (MB) 7.6 10.7 19.1
C++ (sec) 5.6 7.4 12.6

JIT 28.6 36.3 63.5

Java | no JIT 263.2 352.1 614.8
(sec) | UTF & JIT 34.0 39.4 712
UTF & no JIT 315.3 417.2 726.4

be copied to an array of communication buffer instead «
only informing the start pointer of a data array to the con
munication system. This data copy processing will be a
overhead. It is a natural question that the overhead cause
the main difference of performance between Java version an
C++ version. However, figures 2 and 3 also show the ca:
of the one node. In our implementation, the communic:
tion library is not called when the number of nodes is on
In such a case, the difference of elapsed time between C+
and Java version is around three. Therefore, the overhes
of calling communication library is not dominant elemen
However, in C++ version, there is some performance in
provement from one node to two nodes. On the other han
in Java version, we can see some performance degradatic
from one node to two nodes. Accordingly, the overhead «
calling communication library of Java version seems som
what larger than C++ one. We need more detailed obse
vation of the overhead of calling communication library i
future.

Even when taking high productivity of Java into accoun

three-fold performance degradation in numerical computa-
tion is almost unacceptable. However, Java Grande Forum
is working on extensions of Java language to enhance Java
application performance. We are going to introduce these
extensions into our implementations and examine their per-
formance.

Java Grande Forum also proposes a number of benchmark
programs [11, 4, 20]. One of the benchmark suites called Sci-
mark2.0 [20], for example, consists of applets that execute
FFT, Sparse Matrix Multiply, Monte Carlo integration, and
SOR method. This benchmark suite, however, completes
execution within only one minute on Pentium Pro 266 MHz.
Presumably, this is because one of the purposes of the suite
is to gather as many results as possible from a wide vari-
ety of machines. However, with the goal of Java Grande
in mind, the scale of the program seems to be too small.
The benchmark used in [8] is also small as a Grande appli-
cation; it is one of the class A programs in NASPara suite
that sorts an array of 8M integers. The Ray-Tracing prob-
lem in Large Scale Applications category of the benchmark
suite ver. 2.0 [11] proposed by Java Grande Forum Applica-
tion and Concurrency Working Group (JGACWG) contains
only 64 objects. In contrast, the number of objects in each
scene we used here is in the order of 100,000 to 200,000.
The Ray-Tracing benchmark program of JGACWG in Large
Scale Applications uses RMI for the distributed ray-tracing
method and can be used to figure out common problems in
distributed computing with Java, but the size of the prob-
lem is too small in the criteria of current CG research as a
scene rendering problem. To fill up the lack of large scale
problems, we are planning to open the software we used in
the experiments to the public and to propose:it as one of
the benchmarks. We are certain that we must explore a
possibility of Java in practical and large-scale problems in
the future.

Even though performance is obviously a great concern, mem-
ory consumuption was also a serious problem. In the numeri-
cal computation area, many of applications consume a large
amount of memory. Such a large memory consumption as
shown in the experiments restricts the applicability of Java
in this area. Even if systems with garbage collection may
work well when a relatively larger memory space say, two to
three times larger memory area than actually live data size
is given, 7 times larger memory consumption observed in our
experiments is almost hopeless. In many programs including
ours, memory requirements effectively limit the size of solv-
able problems. The cause of this large memory footprint is
not clear at present. It may be due to fragmentation, object
header or other Java-specific storage overheads, or hidden
object references created implicitly inside the class libraries.
There is a possibility of memory leak in our version of the
communication library, but it is unlikely because memory
consumption was stable throughout hours of computation
time after rapid growth in startup. We coded carefully to
avoid references to unnecessary objects. For example, we
explicitly assigned null to the unused indices (i.e. not in the
range between head and tail) of arrays that keep objects in
ring buffers. Otherwise,the garbage collector cannot reclaim
objects pointed to by these array portions. It is surprise for
us that memory consumption was so large in spite of these
careful coding. Research to save runtime memory consump-

132

tion might perhaps be given higher priority, since memory
consumption is currently more restrictive than speed in large
scale computing in Java.

There is a possibility that the Sun’s Java implementation
holds more large size memory than real use. Then, our ob-
servation with unix ps command could be misleading. How-
ever, our parallel process was sometimes finished because of
memory exhausting on the Sun Enterprise. From a practi-
cal standpoint, the observation by ps command may be one
of the first order approximations. Of course, more detailed
observation for memory consumption of Java is needed. We
hope our implementation helps such a study for a grande
application.

5. CONCLUSIONS

Previous work in scientific computations in Java lacks the
following viewpoint:

e Comparison of capabilities of Java with those of other
language (e.g. C++) through implementation of large
scale application by the same programmer.

With regard to this point, comparable performance of Java
implementation to C++ implementation is a current target
for Java applications to catch up. In addition to pursuit of
performance of basic operations such as matrix operations,
empirical study on real world applications is essential. For
this purpose, we presented an example of practical applica-
tions by implementing a distributed parallel radiosity and
ray-tracing method in two languages, and compared these
two implementations in terms speed and memory require-
ment. Measurement showed that our Java implementation
is approximately three to five times slower in both computa-
tion and I/O operations compared to its C++ counterpart.

Benchmark programs currently proposed by Java Grande
are relatively small. We believe that our experience provides
new insights and contributes to a basis for solving problems
that would be encountered when developing large practical
applications in Java. Thus, we propose a parallel radiosity
method and a parallel ray-tracing method to be included in
the future benchmark suite.

It is known that memory consumption of Java programs are
large when compared to traditional languages like C++. In
our experiments, the difference in memory requirement ap-
peared to be larger than the difference in processing speed.
Inefficient memory usage is critical because the amount of
memory often determines the maximum problem size that
can be solved on a given computer system.

Currently we are planning to carry out some experiments on
other platforms in addition to Sun workstations. Besides, to
make our system more complete as a practical application
benchmark, we are planning to include volume rendering as
well as radiosity and ray tracing.

Acknowledgments
This research was partially supported by Grant-in-Aid for
encouragement of Young Scientists, the Ministry of Educa-

tion, Grant No.10780163 and 10780179. We would like to
thank the anonymous reviewers for their helpful comments.

6.
(1]

[2

[3]

(4]

(5]

(6

(7]

8

[9]

(10]

(11]

(2]

(13]

(14]

(15]

REFERENCES

D. Badouel, K. Bouatouch, and T. Priol. Distributing
data and control for ray tracing in parallel. IEEE CG
& Application, 14(4):69-77, July 1994.

M. Baker, B. Carpenter, G. Fox, S. H. Ko, and

S. Lim. mpiJava: An object-oriented Java interface to
MPL In Intl. Workshop on Java for Parallel and
Distributed Computing IPPS/SPDP, Apr. 1999,

D. R. baum and J. M. Winget. Real time radiosity
through parallel processing and hardware acceleration.
Proceedings of the 1990 symposium on Interactive §D
graphics, 24(4):67-75, Aug. 1990.

J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty,
and R. A. Davey. A methodology for benchmarking
Java Grande applications. Proc. ACM 1999 Java
Grunde Conference, pages 81-88, June 1999.

M. Cohen, S. E. Chen, J. R. Wallace, and D. P.
Greenberg. A progressive refinement approach to fast
radiosity image generation. SIGGRAPH, 22(4):75-84,
Aug. 1988.

H. N. et al. Links-1 : A parallel pipelined
multimicrocomputer system for image creation. ACM
Computer Architecture, pages 387-394, July 1983.

G. Fox. Java for scientific computing.
http://www.npac.syr.edu/users/gcf/javaforcse.html.

V. Getov, S. Flynn-Hummel, S. Mintchev, and

T. Ngo. Massively parallel computing in Java. In
Proceedings of MPPM, pages 112-117, London, Nov.
1997. IEEE Computer Society.

A. S. Glassner. Space subdivision for fast ray tracing.
IEEE Computer Graphics and Applications, pages
160-167, 1984.

K. Hwang and Z. Zu. Scalable Parallel Computing.
McGraw-Hill, 1997.

Java Grande benchmarking initiative.
http://www.epcc.ed.ac.uk/javagrande/. Edinburgh
Parallel Computing Centre (EPCC).

J. T. Kajiya. The rendering equation. Computer
Graphics (Proc. SIGGRAPHS), 20(4):143-150, 1986.

H. Kobayashi, H. Yamauchi, Y. Toh, and
T. Nakamura. A hierarchical parallel processing
system for the multipass-rendering method. JEEE

International Parallel Processing Symposium, pages
62—67, April 1996.

F. T. Leighton. Introduction to PARALLEL
ALGORITHMS AND ARCHITECTURES. Morgan
Kaufmann Publishers, 1992.

H. McGhan and M. O’Connor. Picojava: A direct
execution engine for java bytecode. IEEE Computer,
31(10):22-30, October 1998.

133

(16]
(17]
(18]

(19]

[20]
(21]

[22]

[23]

[24)

[25]

[26]

MPI Forum. MPI: The Complete Reference. The MIT
Press, 1994.

MPICH - a portable MPI implementation.
http://www-unix.mcs.anl.gov/mpi/mpich/.

OpenMP: Simple, portable, scalable SMP
programming. http://www.openmp.org/.

D. Paddon and A. Chalmers. Parallel processing of
the radiosity method. Computer-Aided Design,
26(12):917-927, December 1994.

SciMark2.0. http://math.nist.gov/scimark/.

J. P. Singh and M. L. Anoop Gupta. Parallel
visualization algorithms: Performance and
architectural implications. IEEE Computer, pages
45-55, July 1994.

Sun Microsystems. Java Native Interface.
http://java.sun.com/products/jdk/1.2/docs/
guide/ibjni/.

W. T. An improved illumination model for shaded
display. CACM, 23(6):343-349, 1980.

J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A
two-pass solution to the rendering equation: A
synthesis of ray tracing and radiosity methods.
Computer Graphics (SIGGRAPH ’87 Proceedings),
21(4):311-320, July 1987.

G. J. Ward. The radiance lighting simulation and
rendering system. SIGGRAPH, pages 459-472, July
1994.

H. Yamauchi, T. Maeda, H. Kobayashi, and

T. Nakamura. The object-space parallel processing of
the multipass rendering method on the (M7)? with a
distributed-frame buffer system. IEICE Trans. on
Info. & Syst., E80-D(9):909-918, Sept. 1997.

