
Developing a Practical Parallel Multi-pass Renderer
in Java and C++

- - Toward a Grande Application in Java

Hitoshi YAMAUCHI
Denkituusin University, GSIS

Tokyo, Japan
yamauchi @ archi.

is.tohoku .ac.jp

Atusi MAEDA t
Denkituusin University, GSIS

Tokyo, Japan
maeda@is.uec.ac.jp

Hiroaki KOBAYASHI
Tohoku University, GSIS

Sendai, Japan
koba@archi.is.tohoku.ac.jp

ABSTRACT
In tile area of parallel processing, performaIice has been
the pr imary goal, and historically, parallel software writ-
ers paid less a t t en t ion to software portabil i ty. However, as
software is becoming more complicated, costs for developing
and xnaintaining parallel applicat ions are rapidly increasing.
Reusable azld por table software is certainly needed even in
the parallel processing area. Java appeared on the scene
under the slogan of "Wri te once, run azlywhere", advertis-
ing por tabi l i ty as its largest advantage. Java Grande Forum
was established to achieve two goals; por tabi l i ty and high-
performance.

Current Forum discussions seem to concentra te on optimiza-
t ion of Java programs, elements of numerical libraries, mes-
sage passing interface for Java, etc. Few implementa t ions
of pract ical applicat ions are presented so far. To find out
obstacles in wri t ing Grand Challenge applicat ions in Java,
empirical studies on developing large and pract ical applica-
tions in Java are strongly desired.

As an example of pract ical d is t r ibuted parallel applications,
we have implemented two versions of a parallel mult i -pass
rendering system. One version is wr i t ten in C + + and the
other is wr i t ten in Java. The mult i -pass rendering method is
a combinat ion of radiosi ty and ray- t racing methods. These
implementa t ions , about 56,000 lines in total , are publicly
available at
http ://www. archi, is. tohoku, ac. j p/research/cg/. These
two programs are based on the identical a lgor i thm and are

*Current affiliation: Max-Planck-Ins t i tu t fiir Informatik,
Saarbriicken, Germany

tCur ren t affiliation: Universi ty of Tsukuba, Science Infor-
mat ion Processing Center
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted ~4thout fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the lull citation on the first page. To copy
othenvise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Java 2000 San Francisco CA USA
Copyright ACM 2000 1-58113-288-3/00/6...$5.00

ACM 2000 Java Grande San Francisco, California, June 3-4, 2000

directly comparable in te rms of performance and efficiency
in software development. Exper imenta l results on Sun En-
terprise wi th JDK 1.2.1 and gcc 2.7.2 which is used only
for compil ing message passing l ibrary show tha t compared
to the C + + version, the per formance of the Java version is
about three to five t imes slower and requires approximate ly
four to seven t imes more memory space, We also discuss
some problems encountered in developing pract ical parallel
d is t r ibuted appl icat ions in Java.

1. INTRODUCTION
Early" researchers on paral lel computers paid vir tual ly no
a t t en t ion to program portabi l i ty . Since parallel processing
is a promising approach to solve a wide variety of complex
or huge problems, the p r imary concern of parallel process-
ing research is to achieve high-performance. However, it
is hard to develop high-performance software, while keep-
ing their portabil i ty. In h igh-performance software develop-
ments , special hardware supports are often assumed. Dedi-
cated p rogramming languages or p rogramming envi romnents
depending on par t icular parallel p la t forms are fairly com-
mon.

On the other hand, as software becomes get t ing more com-
plicated and larger, costs for development and main tenance
of programs are ge t t ing more and more expensive. In con-
trust , performance improvement of commodi ty products makes
high-performance hardware widely available at lower cost.
As a result, it is not a cost-effective idea to modify pro-
grams whenever they are por ted on new platforms. In other
words, a l though performance is still a m a t t e r of greatest
impor tance , software por tab i l i ty is also becoming a crucial
issue.

New s tandards for For t ran , especially s tandard iza t ion of
communica t ion libraries such as MPI [16], and s tandardiza-
t ion for parallel izing compiler directives such as OpenMP [18]
are typical examples of efforts to solve this por tabi l i ty prob-
lem. Enhancemen t of exist ing laaguages, however, cannot
completely remove envi ronment -dependent par t of the sys-
tem. It is still very ha rd to pursue higher performance and
pla t form independence at the same time.

In this s i tuat ion, Java appeared as an u l t imate ly por table

126

(

a

Z1"1£

3.

We i~
rnPi2~

aZ'e use

Pa,,

a s a

~pia~
librar
iraple~

"/" Corz/j
are gc

eSpectl
t libra~
t ion bO

language. At first, apt,l ications in Java for nmnerical com-
puting were impract ical because early Java programs ran
quite slow. However, its high por tabi l i ty was so a t t rac t ive
tha t some eager a t t empts were made to exploit the capabil-
ity of Java in the field of scientific comput ing [7]. Activities
of Java Grande Forum are the most not iceable movement
among them. In Java Grande Forum, problems aald their
possible solutions in developing numericM computa t ion ap-
plications ('.ailed Grande Applicat ions are being discussed.

Java is a new language and is still making contimmd progress
in its sophistication. Research interests tend to be directed
to opt imizat ion of scriM, relatively small programs. Of tours%
researches on pm'allel Java ~pplications are being performed,
though, practical amt laa'ge-srMe parallel applicat ions in Java
are not yet ready for pr ime time.

In this paper, we present a large scale parallel appl icat ion
wri t ten in Java. We believe it is par t icular ly valuable to
obta in empiricM knowledges and experiences in building and
using pract ical applicat ions in Java in this immature stage.

W(" have impIemented photo-real ist ic image synthesis pro-
grams based on the in tegra t ion of radiosi ty attd ray-tracing
in bo th Java and C + + . The t)rogram is parallelized for
execution on a message-passing parMlel computer . Both of
implementa t ions use the identical a lgor i thm and suitable for
direct performance comparison between the two languages.

The rest of the paper is organized as follows. In Section 2,
we will show the brief description of a parallel multi-pass
rendering a lgor i thm which we implemented here. In Section
3, we describe implementa t ions of the parallel multi-pass
rendering method in Java and C + + . In Section 4, we will
show the exper imental results of bo th implementa t ions and
also discuss problems for developing Grande Applications in
Java. Section 5 concludes the paper wi th a summaa'y and
some directions for fur ther investigations.

2. A PARALLEL MULTI-PASS RENDERING
METHOD: INTEGRATION OF RADIOS-
ITY AND RAY-TRACING

2.1 Multi-pass rendering Method
The radiosity method and the ray-tracing method are algo-
r i thms tha t generate an image by construct ing a vir tual
space on a computer and s imulat ing propaga t ion of light
among objects modeled inside the space. The principal for-
mula is called the rendering equation, which is given by [12]
as tbllows.

r (z , z ') = g (x , z ') [e (~ , x ') +

p(z,x',z") g(z',z") I(z',z") dz"]

Here, I (~ , z ') is the amount of light energy propagated from
point :e' to point z, g(m, a~') is the geometry t e rm represent-
ing visibihty f rom point :~' to ~, e(z, z') is the amount of light
energy radia ted from z ' to x, and p(z, z ' , m') is the bidirec-
t ional reflection dis t r ibut ion funct ion t ha t denotes the ra t io
of rays from :~" to x via x' .

To generate photo-reMistic images, we must solve the ren-
dering equat ion as accurate as possible. Applications based

127

on these a lgor i thms include l ight ing and landscape simula-
tions tha t require physicMly accurate calculations. Recently,
they are also used in computer games, arts and so on. Due to
physically accurate computa t ions involved, however, these
algori thms are known to be very t ime-consuming, and this
feature prevents photo-real is t ic image synthesis based on the
rendering equat ion from pract ical use.

Of the two algor i thms above, ray- t racing [23] may be more
popular as a method for generat ing photo-realist ic images.
W h a t we (:all " ray- t racing a lgor i thm" uses a set of a screen
and a viewpoint to generate an image, and traces rays from
the viewpoint to light som'res with reflection and /o r refrac-
t ion wi th objects. This method is actually referred to as
backward 'ray-traci'ag since rays are t raced from a viewpoint
instead of light sources. In practice, this method does not
have significant advantages unless rays are t raceable toward
light sources. In other words, surfaces need to be assumed
as specular elements in a modeled environment. If diffuse
surfaces are encountered during the backward tracing, fur-
ther t racing of the ray becomes difficult since diffuse surface
does not preserve the s ta te of a ray prior to reflection. In
short, backward ray- t racing is an approximat ion of the ren-
dering equat ion tha t assumes reflection coefficient as mostly
specular.

In ray-tracing, it is difficult to simulate bleeding, whidt is an
effect of ray propagat ion among diffuse surfaces. To com-
pute the effect of bleeding, the radiosity method [5] was
proposed. In the radiosi ty method, objects are divided into
small discrete pieces of planes called patches. Diffuse re-
flective propagat ion of l ight energy among patches are com-
puted, Concretely, an ent ire environment is sampled by ray-
t racing wi th se t t ing a viewpoint on each pa tch and put t ing
a small screen called hemi-cube in front of it. Light energy
t ha t affected a pa tch is ga thered and accumulated on it from
the whole enviromnent , aald reflection energy is radiated
again into the envi ronment after mult iplying the patch 's re-
flectivity. The sampling process is repeated until radiated
energy becomes lower than a predetermined threshold. In
this way, the radiosi ty me thod computes t ranspor t of energy
among diffuse surfaces, and an image is generated by trans-
la t ing energies of visible patches into intensities. Since the
radiosity me thod samples energy of l ight against the ent ire
environment , it can approximate the rendering equat ion by
assuming t ha t reflection on patches is diffuse reflective.

The multi-pass rendering method [24] is an a lgor i thm tha t
combines bo th of the two methods to precisely capture light
propagat ion among bo th dill'use and specular surfaces. In
this paper, the implementa t ions of our parallel renderer are
based on the mult i -pass rendering method.

2.2 Parallelizing Multi-pass rendering Method
The mult i -pass rendering me thod is a combinat ion of the ra-
diosity me thod and the ray- t racing method. The radiosity
me thod computes propagat ion of l ight energy in an envi-
ronment mainly consist ing of diffuse surfaces, while the ray-
t racing me thod calculates propagat ion of rays in an environ-
ment tha t mainly contains specular surfaces. In the multi-
pass rendering method, the propagat ion of rays among dif-
fuse surfaces is computed by radiosi ty first, and the equilib-
r ium of light energy in the diffuse envi ronment is obtained.

After that , rays propagated through specular surfaces are
calculated by ray-tracing. In the ray-tracing phase, the re-
sults of radiosity computat ion are used for global illumi-
nation calculations. In this way, the multi-pass rendering
method has a capability to ha~l(tle global diffuse reflection by
radiosity a~ld specular reflection/refraction by ray-tracing,
and can generate photo-realistic images.

However, the radiosity and ray-tracing methods are both
known as t ime-consuming algorithms. Since the multi-pass
rendering method is a serial combination of these two, it con-
sumes ew:n more time. Some a t tempts for parallelizing this
method have been proposed to accelerate the computat ions
of the multi-pass rendering method.

In radiosity, a visibility between any patches called a form
factor is computed at the t ime of energy exchange. Several
methods to exploit parallelism in this form factor computa-
tion are well known [19, 21, 3]. These methods make use
of the fact that it is possible to test the visibility for each
patch independently when testing which patches exchange
energy each other. In s tandard radiosity methods, a virtual
viewpoint with a virtual screen is set on each patch with
radiating energy. For each pixel of the virtual screen, there
exists an opportunity of independent computations.

In ray-tracing, it is widely known that comp{ltations of the
rays that pass through each pixel can be computed indepen-
dently and thus can be performed in parallel [1].

Therefore, both of parallel radiosity and parallel ray-tracing
basically take advantage of the same source of parallelism;
the independence of sampling at the t ime of visibility test.

In conventional parallelizing methods, basically no knowl-
edge about distance between objects is used for testing exis-
tence of interaction of light between the objects. When one
object is selected, the whole environment has to be scanned
to search objects interacting with the selected one. Space
subdivision methods, e.g. oetree [9], were proposed to make
scanning range small. In ray-tracing, a ray issued from a
viewpoint or an object with reflection searches an interacting
object. In space subdivision methods where a whole space
is subdivided into subspaces, the searching area is limited
from the whole space to some small set of subspaces along
the ray. Similarly, the radiosity method can employ a space
subdivision method for visibility test to restrict the scanning
range as in ray-tracing.

In radiosity, radiation light from one object influences a lot
of the other objects since the method treats diffuse reflec-
tion. Therefore, each object accesses a wide range of the en-
vironment in the radiosity method. In ray-tracing, it is hard
to predict the direction of rays due to reflection and refrac-
tion. Therefore, access pat terns of rays to the environment
become highly irregular [1]. Therefore, in both methods, an
object may access the other objects in the environment to
exchange energy. As a result, when a ray's s tart ing point
and its direction are decided, the objects searching area can
be squeezed by the space subdivision method. However, as
we cannot know the information about the searching area
before calculation, each processor of a parallel system must
be able to access the whole environment to find intersecting

128

objects visible on a screen. This means that the all proces-
sors share the one environment.

If this type of parallel algorithms is implemented on a par-
allel processing system with a shared memory, memory con-
flicts will occur frequently on the shared memory as the num-
ber of processing nodes increases, and it is hard to achieve
linear speedups in the calculations. On the other hand, this
could be implemented on a distr ibuted memory parallel com-
puter with a message-passing mechanism, where objects are
distr ibuted to each local memory. Since this type of parallel
processing causes a large global communicat ion overhead, we
cannot expect to achieve linear speedups when the number
of processing nodes are increased. Another method based
on broadcasting was proposed [6]. In this method, a node
called "host" broadcasts a ray's information to all the pro-
cessing nodes with objects ' information. However, the host
computer will become the bott leneck of the system perfor-
mance. We classify these problems into a "object-sharing
problem" since these problems are caused due to logically
shared objects ' information.

We thought that the object-sharing problem is caused due
to the fact that the conventional parallel image synthesis al-
gorithms usually extract parallelism from standard sequen-
tial image synthesis algorithms. The computat ion models of
sequential algorithms assume the same access t ime to 'any
address like the RAM (Random Access Machine) [14]. How-
ever, on practical parallel processing machines, access t ime
is not constant usually. A remote memory access leads to
a higher cost than an access to local memory, and memory
access conflicts on a shared memory will worsen this situa-
tion.

To solve the object-sharing problem, we noticed that the
rendering equation holds in each subspace even if an ob-
ject space is subdivided. Therefore, we subdivided a space
to subspaces regularly and distr ibute them among parallel
processing nodes. Ray propagat ion is simulated through
inter-processor communications. Each processor calculates
ray-object interaction within allocated subspaces. In this
paper, we call this scheme the object-space parallel process-
ing model.

This method is very simple, but the performance gain of
parallel processing will be marginal unless objects are placed
regularly or randomly in a scene. The reasons are:

The occupation ratio of objects in a space is very low
in usual scenes. For example, it is a special case that
object occupies more than one-half of a space when we
design an office or house. Most part of a room has no
objects as we can see in an actual room.

There is strong object coherency along horizontal and
vertical directions because of the effect of gravity. We
can easily see some examples like a floor in buildings,
ceilings, walls, and pillars. In addition, objects like
furniture do not exist in the air suddenly, and they are
on a floor and a wall. We can also find such examples
in the natural world (e.g. trees).

In the end, we can easily see that objects hold a little volume

in a space and they are not uniformly distributed. Therefore,
parallel processing using simple subspace division and simple
allocation cannot achieve a good performance except that
objects are regularly distr ibuted or randomly distributed.
It may sound inconsistently that both the randomly distri-
bution and the regularly distr ibution of objects can balance
the system load. However, the random distribution means
that there is no bias in objects ' distribution, and therefore,
random allocation of subspaces among processors can also
balance the computat ional loads of the processors as well as
the case of regular distr ibution of objects in a space.

Therefore, when we try to render usual scenes, we must deal
with biased distribution of objects in a space. Adaptive
space division is one of the solutions to solve this problem.
However, it is difficult to allocate such irregular subspace to
processing nodes systematically. Moreover, traversing adap-
tively subdivided subspaces for a large number of rays leads
to a high computat ional costs than regularly subdivided sub-
spaces. That causes another new problem.

In [13, 26], we proposed a static load-balancing scheme based
on the object-space parallel processing model. In this static
load-balancing scheme, a space was subdivided more finely,
compared to the number of processing nodes, and some
hmshing functions were used to allocate subspaces to pro-
cessing nodes randomly. At the same time, traverse costs
from subspace to subspace was kept low.

Two kinds of network topologies were considered in our im-
plementation of the static load-balancing scheme. In [13],
ring, mesh and 3D torus topologies were taken into ac-
count. Network topologies with constant node distance, like
a multi-stage network, was assumed in [26].

In this paper, we implemented this parallel multi-pass ren-
dering method based on the object space parallel processing
model in both Java and C + + , and examined them in terms
of execution t ime and memory space.

3. IMPLEMENTATION OF THE PARALLEL
MULTI-PASS RENDERING ALGORITHM

We implemented parallel multi-pass rendering programs named
m p i 2 C + + and m p i 2 J a v a . Libraries and languages that
are used for these two implementat ions are as follows.

• mpi2C+-4- is wri t ten in C + + and uses MPI (Message
Passing Interface) in C as a communication library.

* m p i 2 J a v a is implemented in Java and uses MPI in C
as a communication library. A wrapper library called
mpiJava [2], which enables Java programs to call MPI
library writ ten in C, was modified and used in this
implementation.

C / C + + compiler and Java compiler we used for implemen-
tations are gcc version 2.7.2 and JDK 1.2.1 production re-
lease, respectively. We adopted mpich[17] version 1.1.2 as
the MPI library. The mpiJava version is 1.2beta with some
modification by the authors.

mpi2C-4--t- contains an implementat ion of a parallel volume
rendering method in addit ion to the multi-pass rendering of
radiosity and ray tracing, astd the Java version can process
multi-pass rendering only. Thus, although we cannot di-
rectly compare the code size of the Java version with that
of the C + + version, we have counted the total number of
source code lines of two programs using UNIX command
we. The source code sizes were 31996 lines in mpi2CA--4-
and 23833 lines in m p i 2 J a v a . The Java program can use
Java's rich set of s tandard libraries and tend to require less
code size. For example, the current implementat ion in Java
uses class Map (HashHap) to keep track of object information.
When we had implemented the C + + version, however, the
stable implementat ion of class libraries such as STL had
not been readily available. Therefore, we had to implement
a table management code by ourself, which resulted in an
increase in code size.

On the other hand, some fundamental classes are not avail-
able in Java class libraries. There is an implementat ion of
Stack based on class Vector , but class queue is not included
in the libraries. We first implemented a queue using class
Vector, but in this implementat ion, a dequeue operation
takes O(n) t ime where n is the number of elements in a
queue. This is the wrong implementat ion. Current version
uses queue based on ring buffers developed by the authors,
and this takes only O(1) time.

4. EXPERIMENTAL RESULTS AND DISCUS-
SION

4.1 Performance evaluation parameters
Table 2 shows the scene parameters of our experiments. The
number of triangle polygons are 100,000 to 220,000 in these
test scenes. The original geometry data can be obtained
from Radiance web site [25]. The experiments are carried
out on a Sun Enterprise E3500 (UltraSPARC-II 336 MHz x
8) running under SunOS 5.6 with 1.5 GB memory. Although
this computer is a multi-processor machine with a shared
memory, our implementat ion does not use shared memory
primitives and each process uses a message passing library
for communications. Therefore, the address space of each
process is completely separated from the other processes.
As a Sun Enterprise has multiple memory modules and we
expect different process uses different memory module, the
object-sharing problem will be avoided under this situation.

In our implementat ions, transmission of ray's information
through ray-packets is needed to synthesize images. Also in
our implementat ion, ray-packets are buffered when they are
sent or received, and users can control the buffer size.

Table 1 shows a point- to-point communication performance
of the system using the ping-pong scheme [10]. Throughputs
are improved as buffer size increases, however, the satura-
tion of performance improvement is found when the size of
buffer exceeds 2X°KB. Moreover, because buffers with too
large size stall ray propagation in the parallel multi-pass
rendering system, proper buffer size exists. From our prelim-
inary experiments, we found a suitable buffer size of around
64(=26)KB, and this buffer size is adopted in the experi-
ments.

129

T a b l e 1: T h r o u g h p u t o f P o i n t to P o i n t C o m m u n i c a -
t i o n (M B / s e c) on a S u n E n t e r p r i s e w i t h rupiah

Throughput (MB/sec) 17 39 60 67 7 3 75

Figure 1 shows the rendering images created by m p i 2 J a v a .
When a scene and the number of processing nodes are fixed,
identical inputs are given to both m p i 2 J a v a and m p i 2 C + +
for compaxison of the Java implementat ion with C + + im-
plementation.

4.2 Results
Figures 2 and 3 show the results in elapsed t ime in each
parallel rendering implementat ion. We use the
S y s t e m . c u r r e n t T i m e M i l l i s () function for the m p i 2 J a v a
and the g e t t i m e o f d a y () function for the mpi2C-4--4- to
measure the elapsed time. Since both functions can get the
current t ime of day, we can measure the "real" processing
t ime including all kinds of overheads. In this measurement,
we use three scenes to evaluate performance of b o t h imple-
mentations on 1, 2, 4 and 8 nodes.

As both m p i 2 J a v a and m p i 2 C + - t - are based on the same
• algorithm and have almost similar configuration of source
codes, we think that the comparison between two implemen-
tations is meaningful. From the experiments, the elapsed
t ime of tile Java with JIT version was 3 to 5 times longer
than that of the C + + version. In addition, the Java version
without JIT takes hmger elapsed t ime in comparison with
the Java with JIT version. In the end, the Java implemen-
tat ion without JIT takes 9 to 25 times longer CPU cycles
than the C + + implementat ion.

We also examined the memory requirement for the execu-
tion of the Java and C + + versions by using the unix ps
command. Table 3 shows the memory consumption in scene
"oJJiee'. This table includes source code size and execution
image size : binary image size of C + + and class file size of
Java. RPS (Relative process size) in the table is calculated
using the following equation.

RPS = process size of Java implementat ion
process size of C + + implementat ion

The average dynamic memory consumption sizes axe calcu-
lated under the same number of nodes and the same scene.
According to our results, Java's stat ic bytecode density is
four times higher than the C + + binary code density. Al-
though Java bytecodes are usually t ranslated into machine
codes by JIT at runtime, there are some processors (e.g.
PicoJava[15]) that can directly execute Java bytecodes as
native codes. On such platforms, the size of a Java class file
directly relates to the code size at runtime. Even though
Java is profitable in terms of static code size density, the
dynamic execution image size of the Java version is huge,
and this is a serious disadvantage of this Java implementa-
tion. The Java version consumes 4 to 7 times more memory
space in comparison with the C + + version.

1

In addition, we measured elapsed t ime of reading modeling
data into the memory in order to examine I /O performance.

T a b l e 3: M e m o r y R e q u i r e m e n t o f m p i 2 C + + a n d
m p i 2 J a v a p e r n o d e (Off ice) a n d t h e i r R P S (R e l a t i v e
P r o c e s s S i z e)

of Nodes 1 2 4 8 code size
C + + (MB) 58 34 27 19 1.6 (MB)
Java (MB) 247 233 129 80 0.4 (MB)
R P S 4.3 6.6 4.8 4.2 - -

20000

10000

2 4

Number of Nodes

C + + : O f f i c e -
C + + : Soda
C++ : C 0 n f
J a v a : Of f i ce
J a v a : S o d a
J a v a : C o n f

8

F i g u r e 2: E l a p s e d T i m e o f P a r a l l e l R a d i o s i t y

The results are shown in Table 4. We found tha t the UTF
conversion filter works when reading an ASCII file. We also
measured this effect. Exper imental results show that the
overhead of the UTF conversion filter reaches 10 to 20e/0 of
execution t ime for reading. If you do not want to use the
UTF conversion filter, you specify encoding "ASCII" at class
constructor InputSt reamReader m your code Explicitly, or
set the locale environment to "C". (i.e., type s e t en v LANG C
in the csh environment.) It is a good idea to set the encoding
ASCII if you can assume an input file is always in an ASCII
format.

In the experiments, the execution t ime of the radiosity method
is 25 times longer than tha t of the ray-tracing method. The
behaviors of both the Java and C + + programs have almost
a similar tendency in changing the number of nodes and
varying scenes. In other words, we cannot find any qualita-
tive differences between two implementat ions. Remarkable
differences between them are in only quanti tat ive aspects
like execution t ime and quanti t ies of memory consumption.

4.3 Discussion and Future Work
Through our measurements with Sun JDK, differences in
performance and memory efficiency in the case when the
same programmers implemented same algori thm is demon-
strated. Although behaviors of small Java programs had
been studied to some extent , results on large scale programs
axe hardly seen in the li terature. In this paper, a practi-
cal application was implemented in two languages; Java and
C + + , and comparison of the behaviors of%he two programs

130

T a b l e 2: P a r a m e t e r s o f T e s t S c e n e s
Test Scene
Number of Patches
Number of Subspaces
Hemi-Cube Resolution (pixels/top surface)
Max Number of Reflections
Screen Size (pixels)
Number of Sampling Rays Per Pixel
Ray Coalescing Factor
Radiosity Energy Convergence Tolerance

(a) Omce I (b) Soda Shop] (c) Conference Room
102,824] 133,668] 226,621

64 × 64 x 64 (---- 262,144)
40 X 40

3
512 X 512

4
256, 512

83 % I 75 % I 84 %

(a) Office (b) Soda Shop

F i g u r e 1: T e s t I m a g e s

(c) Conference Room

800

m
200

• C++ Office
~1 C++ Soda
• C++ Conf
• Java Office
El Java Soda
0 Java Conf

1 2 8

Number of Nodes

F i g u r e 3: E l a p s e d T i m e o f P a r a l l e l R a y - T r a c i n g

are made. In terms of processor performance and I /O perfor-
mance, Java implementa t ion takes three to five t imes more
execution t ime in compar ison with the C + + implementa-
tion. W h e n JIT is turned off, tile Java version requires 9 to
25 t imes more elapsed time.

Our message passing l ibrary for Java version is based on
mpiJava which is implemented by using the JNI (Java Na-
tive Interface) [22] for the MPI library. In most of cases
of using JNI protocol, each element of a da t a array mus t

131

T a b l e 4: E l a p s e d T i m e o f D a t a R e a d
Scene (a) Office (b) Soda (c) ConI

Size of data file (MB) 7.6 10.7 19.1
C + + (see) 5.6 7.4 12.6

JIT 28.6 36.3 63.5
Java no JIT 263.2 352.1 614.8
(see) UTF & JIT 34.0 39.4 71.2

UTF & no JIT 315.3 417.2 726.4

be copied to an array of communica t ion buffer instead of
only informing the s tar t pointer of a da ta array to the com-
munica t ion sys tem. This da t a copy processing will be an
overhead. It is a na tu ra l quest ion tha t the overhead causes
the ma in difference of performance between Java version and
C + + version. However, figures 2 and 3 also show the case
of the one node. In our implementa t ion , the communica-
t ion l ibrary is not called when the number of nodes is one.
In such a case, the difference of elapsed t ime between C + +
and Java version is a round three. Therefore, the overhead
of calling communica t ion l ibrary is not dominant element.
However, in C + + version, there is some performance im-
provement f rom one node to two nodes. On the other hand,
in Java version, we can see some performance degradat ion
from one node to two nodes. Accordingly, the overhead of
calling communica t ion l ibrary of Java version seems some-
what larger than C + + one. We need more detailed obser-
vation of tile overhead of calling communica t ion library in
future.

Even when taking high product iv i ty of Java into account,

three-fold performance degradat ion in numerical computa-
t ion is almost unacceptable. However, Java Grande Forum
is working on extensions of Java language to enhance Java
applicat ion performance. We are going to introduce these
extensions into our implementa t ions and examine their per-
forinance.

Java Grande Foruiii also proposes a number of benchmark
programs [11, 4, 20]. One of the benchmark suites called Sci-
mark2.0 [20], for example, consists of applets t ha t execute
FFT, Sparse Matr ix Multiply, Monte Carlo integrat ion, and
SOR method. This benchmark suite, however, completes
execution within only one minu te on Pen t ium Pro 266MHz.
Presumably, this is because one of the purposes of the suite
is to gather as many results as possible f rom a wide vari-
ety of machines. However, wi th the goal of Java Grande
in mind, the scale of the program seems to be too small.
The benchmark used in [8] is also small as a Grande appli-
cation; it is one of the class A programs in NASPara suite
tha t sorts an array of 8M integers. The Ray-Tracing prob-
lem in Large Scale Applicat ions category of the benchmark
suite vet. 2.0 [11] proposed by Java Grande Forum Applica-
t ion and Concurrency Working Group (J G A C W G) contains
only 64 objects. In contrast , the number of objects in each
scene we used here is in the order of 100,000 to 200,000.
The Ray-Tracing benchmark program of J G A C W G in Large
Scale Applications uses RMI for the d is t r ibuted ray- t racing
method and can be used to figure out common problems in
dis t r ibuted comput ing with Java, but the size of the prob-
lem is too small in the cr i ter ia of current CG research as a
scene rendering problem. To fill up the lack of large scale
problems, we are p lanning to open the software we used in
tim experiments to the public and to propose: it as one of
the benchmarks. We are cer tain t ha t we must explore a
possibility of Java in pract ical and large-scale problems in
the future.

Even though performance is obviously a great concern, mem-
ory consumpt ion was also a serious problem. In the numeri-
cal computa t ion area, many of applicat ions consume a large
amount of memory. Such a large memory consumpt ion as
shown in the experiments restricts the applicabil i ty of Java
in this area. Even if systems with garbage collection may
work well when a relatively larger memory space say, two to
three t imes larger memory area t han actually live da ta size
is given, 7 t imes larger memory consumpt ion observed in our
experiments is a lmost hopeless. In many programs including
ours, memory requirements effectively l imit the size of solv-
able problems. The cause of this large memory footpr int is
not clear at present. It may be due to f ragmenta t ion , object
header or other Java-specific storage overheads, or hidden
object references created implici t ly inside the class libraries.
There is a possibility of memory leak in our version of the
communicat ion library, but it is unlikely because memory
consumption was s table th roughout hours of computa t ion
t ime after rapid growth in s tar tup. We coded carefully to
avoid references to unnecessary objects. For example, we
explicitly assigned null to the unused indices (i.e. not in the
range between head and tail) of arrays tha t keep objects in
ring buffers. Otherwise, the garbage collector cannot reclaim
objects pointed to by these array portions. It is surprise for
us tha t memory consumpt ion was so large in spite of these
careful coding. Research to save run t ime memory consump-

t ion might perhaps be given higher priority, since memory
consumpt ion is current ly more restr ic t ive than speed in large
scale comput ing in Java.

There is a possibili ty t ha t the Sun's Java implementa t ion
holds more large size memory t han real use. Then, our ob-
servation wi th unix ps command could be misleading. How-
ever, our parallel process was somet imes finished because of
memory exhaus t ing on the Sun Enterprise. From a practi-
cal s tandpoint , the observat ion by ps command may be one
of the first order approximat ions . Of course, more detailed
observat ion for memory consumpt ion of Java is needed. We
hope our implementa t ion helps such a s tudy for a grande
application.

5. CONCLUSIONS
Previous work in scientific computa t ions in Java lacks the
following viewpoint:

• Comparison of capabil i t ies of Java wi th those of other
language (e.g. C + +) th rough implementa t ion of large
scale appl ica t ion by t h e same programmer .

W i t h regard to this point , comparable performance of Java
implementa t ion to C + + implementa t ion is a current target
for Java appl icat ions to catch up. In addi t ion to pursui t of
performance of basic operat ions such as ma t r ix operat ions,
empirical s tudy on real world appl icat ions is essential. For
this purpose, we presented an example of pract ical applica-
t ions by implement ing a d is t r ibuted parallel radiosi ty and
ray- t racing me thod in two languages, and compared these
two implementa t ions in t e rms speed and memory require-
ment . Measurement showed tha t our Java implementa t ion
is approximate ly three to five t imes slower in bo th computa-
t ion and I / O operat ions compared to its C + + counterpar t .

Benchmark programs current ly proposed by Java Grande
are relat ively small. We believe t ha t our experience provides
new insights and cont r ibutes to a basis for solving problems
t ha t would be encountered when developing large pract ical
appl icat ions in Java. Thus, we propose a parallel radiosity
me thod and a parallel ray- t rac ing me thod to be included in
the future benchmark suite.

It is known tha t memory consumpt ion of Java programs are
large when compared to t rad i t iona l languages like C + + . In
our experiments , the difference in memory requirement ap-
peared to be larger t han the difference in processing speed.
Inefficient memory usage is cri t ical because the amount of
memory often determines the max imum problem size tha t
can be solved on a given computer system.

Current ly we are p lanning to carry out some exper iments on
other platforms in addi t ion to Sun workstat ions. Besides, to
make our system more complete as a pract ical appl icat ion
benchmark , we are p lanning to include volume rendering as
well as radiosi ty and ray tracing.

Acknowledgments
This research was par t ia l ly suppor ted by Grant - in-Aid for
encouragement of Young Scientists, the Ministry of Educa-

132

tion, Grant No.10780163 and 10780179. We would like to
thank the anonymous reviewers for their helpful comments.

6. REFERENCES
[1] D. Badouel, K. Bouatouch, and T. Priol. Distributing

data and control for ray tracing in parallel. IEEE CG
Application, 14(4):69-77, July 1994.

[2] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and
S. Lim. mpiJava: An object-oriented Java interface to
MPI. In Intl. Workshop on Java for Parallel and
Distributed Computing IPPS/SPDP, Apr. 1999.

[3] D. R. baunl and J. M. Winger. Real time radiosity
through parallel processing and hardware acceleration.
Proceedings of the 1990 symposium on Interactive 3D
graphics, 24(4):67-75, Aug. 1990.

[4] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henry,
and R. A. Davey. A methodology for benchmarking
Java Grande applications. Proc. A CM 1999 Java
Grunde Conference, pages 81-88, June 1999.

[5] M. Cohen, S. E. Chen, J. R. Wallace, and D. P.
Greenberg. A progressive refinement approach to fast
radiosity image generation. SIGGRAPH, 22(4):75-84,
Aug. 1988.

[6] H. N. et el. Links-1 : A parallel pipelined
multimicrocomputer system for image creation. A CM
Computer Architecture, pages 387-394, July 1983.

[7] G. Fox. Java for scientific computing.
http://www.npac.syr.edu/users/gcf/javaforcse.html.

[8] V. Getov, S. Flynn-Hummel, S. Mintchev, and
T. Ngo. Massively parallel computing in Java. In
Proceedings of MPPM, pages 112-117, London, Nov.
1997. IEEE Computer Society.

[9] A. S. Glassner. Space subdivision for fast ray tracing.
IEEE Computer Graphics and Applications, pages
160-167, 1984.

[10] K. Hwang and Z. Zu. Scalable Parallel Computing.
McGraw-Hill, 1997.

[11] Java Grande benchmarking initiative.
ht tp://www.epcc.ed.ac.uk/javagrande/. Edinburgh
Parallel Computing Centre (EPCC).

[12] J. T. Kajiya. The rendering equation. Computer
Graphics (Proc. SIGGRAPHS), 20(4):143-150, 1986.

]13] H. Kobayashi, H. Yamauchi, Y. Toh, and
T. Nakamura. A hierarchical parallel processing
system for the multipass-rendering method. IEEE
International Parallel Processing Symposium., pages
62-67, April 1996.

[14] F. T. Leighton. Introduction to PARALLEL
ALGORITHMS AND ARCHITECTURES. Morgan
Kaufmann Publishers, 1992.

[15] H. McGhan and M. O'Connor. Picojava: A direct
execution engine for java bytecode. IEEE Computer,
31(10):22-30, October 1998.

133

[16] MPI Forum. MPI: The Complete Reference. The MIT
Press, 1994.

[17] MPICH - a portable MPI implementation.
http://www-unix.mcs.anl.gov/mpi/mpich/.

[18] OpenMP: Simple, portable, scalable SMP
programming, ht tp://www.openmp.org/.

[19] D. Paddon and A. Chalmers. Parallel processing of
the radiosity method. Computer-Aided Design,
26(12):917-927, December 1994.

[20] SciMark2.0. http:/ /math.nist .gov/scimark/.

[21] J. P. Singh and M. L. Anoop Gupta. Parallel
visualization algorithms: Performance and
architectural implications. IEEE Computer, pages
45-55, July 1994.

]22] Sun Microsystems. Java Native Interface.
ht tp: / / java.sun.com/products/ jdk/1.2/docs/
guide/lbjni/.

[23] W. T. An improved illumination model for shaded
display. CACM, 23(6):343-349, 1980.

[24] J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A
two-pass solution to the rendering equation: A
synthesis of ray tracing and radiosity methods.
Computer Graphics (SIGGRAPH '87 Proceedings),
21(4):311-320, July 1987.

[25] G. J. Ward. The radiance lighting simulation and
rendering system. SIGGRAPH, pages 459-472, July
1994.

[26] H. Yamauchi, T. Maeda, H. Kobayasifi, and
T. Nakamura. The object-space parallel processing of
the multipass rendering method on the (MTr) ~ with a
distributed-frame buffer system. IEICE Trans. on
Info. ~4 Syst., E80-D(9):909-918, Sept. 1997.

