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Abstract

We present a new method for the restoration of digitized
photographs. Restoration in this context refers to removal
of image defects such as scratches and blotches as well as
to removal of disturbing objects as, for instance, subtitles,
logos, wires, and microphones.

Our method combines techniques from texture synthesis
and image inpainting, bridging the gap between these two
approaches that have recently attracted strong research in-
terest. Combining image inpainting and texture synthesis in
a multiresolution approach gives us the best of both worlds
and enables us to overcome the limitations of each of those
individual approaches.

The restored images obtained with our method look plau-
sible in general and surprisingly good in some cases. This
is demonstrated for a variety of input images that exhibit
different kinds of defects.

Keywords: multiresolution texture synthesis, image in-
painting, image restoration, frequency decomposition

1 Introduction and Related Work

Today, digital photo cameras have established them-
selves on both consumer and professional markets. Apart
from the immediate availability of photos for viewing
and/or electronic transfer to an editorial office, digital cam-
eras have the big advantage of producing electronic images
that can easily be stored and copied without loss of quality
for the next decades to come. Although these advantages
may sound great, one has to consider that the number of
analog camera sales worldwide each year is still a multi-
ple of the number of corresponding digital camera sales:
the quality and resolution of analog images is still hard to
achieve even for high-end (and high-price) digital cameras.

As a result, the amount of analog images that have to be
digitized in order to “live forever” is still growing. In addi-
tion, many photographs from the pre-digital era still need to
be digitized to prevent them from decay. Unfortunately, this
material often exhibits defects such as scratches or blotches.

Equally disturbing artifacts are, for instance, subtitles, lo-
gos, and physical objects such as wires and microphones,
which should be removed from the image. Obviously, it is
desirable to remove defects or disturbing objects in a fully
automatic way. Such automatism would include detection
of the image regions to be repaired as well. Although an
automatic detection should be possible for obvious defects,
the detection of unwanted objects is a completely subjec-
tive process that cannot be performed without user interac-
tion. Due to this restriction, and to avoid going beyond the
scope of this paper, we do not address automatic detection
here. For the special case of image sequences, detection and
restoration of image defects has been addressed in [14].

In this paper we present a new method to automati-
cally repair “damaged” areas of digitized photographs. Our
method performs a frequency decomposition of the input
image to combine techniques and ideas from two different
areas of research:texture synthesisandimage inpainting.

Recently, texture synthesis [9, 19] has become an ac-
tive area of research. The common idea of all texture syn-
thesis approaches is to create a new texture from a (typ-
ically small) initial seed texture such that the appearance
(i.e. structure and color) of the synthesized texture resem-
bles the sample texture. Early approaches employed image
pyramids and histogram matching to create two- or three-
dimensional textures from a 2-D sample image [11], or syn-
thesized textures by sampling successive spatial frequency
bands from an input texture, which has been decomposed
using a Laplacian pyramid [7]. Texture synthesis based on
statistical measurements of the seed image and its wavelet
decomposition has been proposed in [17]. The approach
presented in [10] is based on the original work in [9] and
introduces a scheme to select the order of pixels that are
synthesized. Recent publications focus on texture synthesis
on surfaces [20, 18, 21], texture synthesis for “natural tex-
tures” [2], real-time texture synthesis [15, 22], or on texture
transfer [8, 12].

In principle, texture synthesis techniques could be em-
ployed to repair digitized photographs, see also Figure 1.
Especially if a damaged area needs to be filled with some
pattern or structure, texture synthesis does a good job —
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Figure 1. Comparison between texture synthesis, image inpainting, and our method for input images
with texture (top row) and with texture and additional intensity gradient (bottom row). Each row left
to right: input image (damaged areas are masked out); resulting images from texture synthesis [19],
from image inpainting [16], and from our new method.

given that the sample area in the same image is large
enough. However, texture synthesis usually fails, if the area
to be reconstructed contains an additional color or intensity
gradient as it is shown in Figure 1 (bottom row).

Image inpainting techniques are, in a way, complemen-
tary to texture synthesis. Pioneered by Bertalmioet al. [3],
approaches have been presented that propagate informa-
tion from the surroundings of masked areas into their in-
terior. Unlike texture synthesis, image inpainting handles
color/intensity gradients correctly, but fails to reconstruct
areas that should contain textures with fine detail. The
approach presented in [3] is based on PDEs. Informa-
tion from the environment of masked areas is propagated
along isophotes, which are computed to be perpendicular
to the discretized gradient vector for each pixel along the
inpainting contour. A 2-D Laplacian is used to estimate
color/intensity variation and propagates this variation along
the isophote direction. Anisotropic diffusion iterations are
run from time to time to smooth the inpainted region. To
speed up the computation time of this approach, an isotropic
diffusion model with user-defined diffusion barriers has
been proposed in [16]. The mathematical background of
image inpainting has been thoroughly investigated in [6, 5].

The only approach we are aware of that can handle both
texture and intensity variation for image restoration has
been presented by Hirani and Totsuka [13]. Their algorithm
is based on projections onto convex sets and employs a

Fourier transform together with a clipping procedure, which
are carried out alternatively for a user-defined number of it-
erations. In addition to the damaged area, the user must
interactively select a sample region, which is needed to re-
pair the damaged area. The sample region is restricted to
be a translated version of the defective region w.r.t. its tex-
ture. Different intensities of sample and defective region are
taken care of automatically.

2 Overview of our Method

As it is mentioned in the introduction, we do not address
automatic detection of damaged image regions in this paper
for several reasons. Thus, we require the user to provide a
binary maskM that identifies the image regions to be re-
constructed. We assume this mask to be of equal size as the
input imageI, i.e. for each pixel inI we have a correspond-
ing binary value inM . Yet, we do not require that the mask
is given in pixel precision: damaged areas inI may be cov-
ered generously inM . If, however, the masked area inM is
much larger than the actual damaged area inI, unnecessary
degradation of the resulting image quality may occur.

Our algorithm proceeds as follows (cf. also Figure 2):

1. The input imageI is decomposed into a high-
frequency partH and a low-frequency partL using a
discrete cosine transformation (DCT) (cf. Section 3.1).



2. The fast image inpainting algorithm proposed in [16]
is applied to the interior of the masked areas of the
low-frequency imageL to obtain the inpainted image
L∗. During this step, information from the whole input
image may be used by the image inpainting algorithm.
However, only the pixels inside the masked areas will
be modified.

3. The high-frequency imageH is decomposed into a
Gaussian pyramid withn+1 levelsHi (i = 0, . . . , n).
Section 3.2 provides some more details about this step.

4. Starting from the highest levelHn, we apply multires-
olution texture synthesis [19] inside the masked areas
in Hi (i = n, . . . , 0):

4.1. First, akD-tree for fast nearest neighbor look-
up is built [1]. However, the search space for
texture synthesis in levelHi does not only con-
tain the non-masked areas ofHi, but additionally
includes the corresponding areas of the already
synthesized higher levelsH∗

k (k = i+1, . . . , n).
To obtain the seed image for the highest levelHn,
we simply apply the complementary maskMn to
Hn.

4.2. Texture synthesis is applied inside the masked
area ofHi. Theneighborhood vector(cf. [19]),
which is used to perform a look-up in thekD-
tree, is composed of the pixel information from
the texture synthesis kernel in levelHi and of
all corresponding kernels from the higher levels
H∗

k (k = i+1, . . . , n). This ensures high co-
herency among all texture synthesis levels.

More details about this texture synthesis step are given
in Section 3.3.

5. The synthesized high-frequency imageH∗
0 and the in-

painted low-frequency imageL∗ are summed up to
yield I∗, which represents the restored version of the
input imageI.

Details of our implementation are given in the following
Section 3. Figure 3 shows some of the intermediate levels
of our algorithm for a sample input image.

3 Implementation Details

3.1 Frequency Decomposition

In the first step of our algorithm, the input imageI is
decomposed into a set of spectral sub-bands using a dis-
crete cosine transform (DCT). Next, we select the firstκ
sub-bands and compute the inverse DCT of this subset. The
resulting image is used as the low-frequency imageLκ.
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Figure 2. Overview of our method. Top to bot-
tom: the input image I is decomposed into a
high-frequency image H and a low-frequency
image L using a DCT. Image inpainting is ap-
plied to the low-frequency part L to obtain the
inpainted image L∗. The high-frequency part
H is decomposed into a Gaussian pyramid
(shown up to level 2 in this example). Starting
from the highest level ( H2), multiresolution
texture synthesis is applied to the masked
areas of the levels Hi. For each level, the
neighborhood vector for the texture synthe-
sis (cf. [19]) is composed of the kernels of that
level and of all higher levels. In this way, co-
herency is maintained throughout all texture
synthesis levels. Finally, the resulting high-
frequency image H∗

0 and the low-frequency
image L∗ are summed up to yield the restored
image I∗.
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Figure 3. Multiresolution texture synthesis. Left to right: input image I; inpainted low-frequency
image L∗; two levels ( H0,H1) of the Gaussian decomposition of the high-frequency image H; the
same two levels after texture synthesis ( H∗

0 ,H∗
1 ). The detail images Hi and H∗

i (i = 0, 1) are shown
with gamma correction to emphasize the high-frequency detail. The restored image I∗ is shown in
Figure 1 bottom right.

The corresponding high-frequency imageHκ is obtained
by subtraction:Hκ := I − Lκ. Obviously, the parame-
ter κ determines an upper bound for the (low) frequencies
that are contained inLκ. Our goal is, to have as much de-
tail (= high frequencies) as possible inHκ, while making
sure that low-frequency gradients are completely contained
in Lκ. To this end, we compute the autocorrelation matrix1

Aκ of Hκ: Aκ := DCT−1(DCT(Hκ) · DCT(Hκ)). For
a non-square input imageI, we padHκ with zeros to ob-
tain a square matrixH ′

κ and clip the zeroed border of the
resultingA′

κ := H ′
κ · H ′

κ. Next, we compute the standard
deviation of the autocorrelation matrixAκ. In Figure 4, the
resulting standard deviations of the autocorrelation matrices
of the input images shown in Figure 5 are plotted over the
range ofκ = 1, . . . , 16. We found that choosing the lowest
κ value that yields a standard deviation of less than 0.001
gives good results in general.

3.2 Gaussian Decomposition

The decomposition of the high-frequency imageH into
a Gaussian pyramid is based on the approach proposed by
Burt and Adelson [4]. In particular, we employ the 5x5
Gaussian kernelω proposed in [4] with the recommended
parameter valuea = 0.4:

ω(u, v) = ω̂(u) ω̂(v)
ω̂(0) = 0.4, ω̂(±1) = 0.25, ω̂(±2) = 0.05

The pyramid decomposition proposed in [4] requires that
the input image has a resolution of(p 2N + 1)× (q 2N + 1)
pixels (p, q,N ∈ N) to ensure that a Gaussian pyramid of

1Actually, the autocorrelation matrixA of a matrix H is defined as
A := DCT−1(DCT(H) · DCT(H)), whereH denotes the conjugate of
H. In our case, the matricesHκ (and thus also DCT(Hκ)) contain real
numbers only.
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Figure 4. Standard deviations of the auto-
correlation matrices Aκ of the input images
shown in Figure 5 plotted over the range of
κ = 1, . . . , 16.

N+1 levels may be constructed. In our case, we may safely
terminate the pyramid decomposition at a leveln � N+1.
This can be explained as follows: during the texture synthe-
sis in leveli, we include the pixel information from the ker-
nels of all higher levelsi+1, . . . , n into the nearest neighbor
search. To be successful, however, the search needs to have
enough candidates (contiguous groups of pixels). Thus, the
size of the smallestHn must not be too small. In practice,
we obtained good results for pyramid decompositions up to
level three. As a consequence, the resolution of the input
imageI is practically unrestricted for our method.

3.3 Texture Synthesis

For the texture synthesis (Step 4 in Section 2), we im-
plemented and tested the approaches presented in [9], [19],



and [2]. Apart from the advantage of speed-up of the algo-
rithm in [19], we found the results of all approaches to be
pretty similar. We finally implemented the approach pro-
posed in [12], which basically switches between the tex-
ture synthesis algorithms from [19] and [2] from level to
level, depending on a local distance criterion. During the
texture synthesis in levelHi, we typically used the 5x5
causal kernel from [19] withinHi, a standard 3x3 ker-
nel for levelHi+1, and a 1x1 kernel for the higher levels
Hk (k = i+2, . . . , n).

Multiresolution texture synthesis is applied inside the
masked areas of each levelHi (i = n, . . . , 0). The com-
plementary part ofHi (i.e. the part ofHi which is outside
the masked areas) is used as the seed image. Since theHi

differ in size from level to level, the mask has to be adapted.
Let M0 := M denote the user-defined binary mask in the
size of the input image. We decompose this mask into a
Gaussian pyramid up to leveln using the same approach
and kernel as for the image data (see Section 3.2). This op-
eration is carried out in floating point arithmetic with 1.0
and 0.0 representing true and false for the initial levelM0,
respectively. Thus, the higher levelsMi (i = 1, . . . , n) con-
tain blurry images of the initial maskM . Next, we quantize
every Mi back into a binary mask such that 0.0 maps to
false and any other value in]0, 1] is mapped to true. Given
that the number of levels of the pyramid is typically three or
four in our application, the clear distinction between 0.0 and
any value larger than zero is not an issue in single precision
floating point.

4 Results

Our algorithm is controlled by two different parameters:
the number of DCT sub-bands (κ), from which the low-
frequency imageLκ is computed (cf. Section 3.1), and the
number of levels (n + 1) in the Gaussian decomposition
of the high-frequency image (cf. Section 2). In practice,
we obtained very good results when choosing the lowest
κ value that yields a standard deviation of less than 0.001
as described in Section 3.1. Thus, the choice ofκ is fully
automated in our approach. The optimal number of levels
in the Gaussian decomposition is somewhat hard to predict,
though. In general, we obtained good results when using
three or four levels, i.e. settingn = 2 or n = 3.

Figure 5 shows some results obtained with our method.
Each input image is shown with its mask applied. For the
purpose of illustration, the color of each mask has been
chosen to differ significantly from the content of the input
image. We found that the restored images look plausible
in general. In some cases we obtained results that looked
surprisingly good. One example is thetable image (Fig-
ure 5, right column), where the flare of the highlight that
is reflected from the marble floor is restored very well af-

ter the masked tables have been removed. We have not
performed numerical comparisons of the results of differ-
ent image restoration techniques, though. We believe that
a simple RMS comparison is useless in the context of im-
age restoration, since it does not take into account relevant
perception issues.

In our approach, we apply image inpainting to handle
intensity gradients in the input images. During our simula-
tions, we found that multiresolution texture synthesis alone
can solve the intensity variation problem to a certain ex-
tent. However, the larger and the more irregularly shaped
the masked areas are, the more favorably it is to use image
inpainting in addition to multiresolution texture synthesis.

Currently, our implementation is rather experimental: no
optimizations have been performed, and the timings include
gathering of quite a lot of statistical data. All timings were
collected on a 1.7 GHz Pentium4 PC and are given for an
input image size of 600×450 pixels. The time to restore
an image depends heavily on the percentage of the masked
pixels. In our simulations, we typically used masks that
covered 4–6 % of the input image. For these masks, our
algorithm took about 5–10 min to complete (including I/O).
The initial fast image inpainting took 4–20 sec, depending
on the convergence of the (iterative) inpainting algorithm.

5 Conclusion and Future Work

We have presented a new method that combines texture
synthesis and image inpainting in a multiresolution frame-
work for the restoration of digitized photographs. The com-
bination of these two powerful approaches enables us to
simultaneously recover texture and color/intensity gradient
information. We have demonstrated the quality of the re-
sults of our method for a variety of defective input images.

One of the ideas we’d like to put into practice is the ap-
plicability of a “fuzzy mask”, i.e. a mask where each pixel
has a probability between 0.0 and 1.0 instead of a binary
true/false. Such masks would be useful to create smooth
transitions between the content of the image that is kept and
the modified pixels.

In addition, we are planning to investigate a tight cou-
pling of the initial image inpainting and the results from a
texture synthesis step. Image inpainting propagates infor-
mation from the environment of a masked area to the inte-
rior. However, the structure inside the masked area is not
known. Texture synthesis does not know about the struc-
ture either, but it can give some reasonable results if the
unknown structure is assumed to be similar to what is still
visible in other parts of the input image. Therefore it seems
promising to “guide” the initial image inpainting using the
result of a previous texture synthesis. In this way, diffu-
sion could proceed along important feature lines, thereby
improving the quality of the inpainting step significantly.
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Figure 5. Top row: input images with masked areas. Bottom row: restored images (see also Sec-
tion 4). The parameter κ (= number of DCT sub-bands used to compute the low-frequency image Lκ)
has been chosen automatically according to our autocorrelation metric (cf. Section 3.1).
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